
Mitigating Anti-Forensics:
A Schema-based Approach

Phil Knüfer

Bachelor’s Thesis – January 5, 2014.
Chair for System Security.

1st Supervisor: Prof. Dr. Thorsten Holz
2nd Supervisor: Dipl. Inf. Johannes Hoffmann
Advisor: Dipl. Wirt.-Inf. Martin Wundram (DigiTrace GmbH),

M.A. Alexander Sigel (DigiTrace GmbH)

Abstract

The goal of this thesis is to find an improved way to deal with the ever-growing anti-
forensic risk. The situation today is that most testing is conducted unstructured
and insufficiently organised. We present a new schema-based approach that tries to
counter this behaviour. Therefore, we first design our own schema and give ideas on
how test cases can look like. We then implement examplary test cases and describe
this step in detail to give ideas on how to build own ones. At last, we evaluate a cross-
section of forensic tools with the test cases and and find out that our implementation
work is well-suited to find flaws in today’s forensic software products. We conclude
that there is still much work to be done to enhance security against the anti-forensic
threat.

Declaration

I hereby declare that this submission is my own work and that, to the best of
my knowledge and belief, it contains no material previously published or writ-
ten by another person nor material which to a substantial extent has been ac-
cepted for the award of any other degree or diploma of the university or other
institute of higher learning, except where due acknowledgment has been made in
the text.

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, dass alle Stellen
der Arbeit, die wörtlich oder sinngemäß aus anderen Quellen übernommen wurden,
als solche kenntlich gemacht sind und dass die Arbeit in gleicher oder ähnlicher Form
noch keiner Prüfungsbehörde vorgelegt wurde.

Date author

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2
1.3 Contribution and Limitations . 4
1.4 Organisation of This Thesis . 5

2 Background 7
2.1 Digital Forensics . 7
2.2 Digital Forensic Software . 8
2.3 Anti-Forensics . 8
2.4 Standardisation of Digital Forensic Tool Testing 10

2.4.1 Computer Forensic Tool Testing Project (CFTT) 10
2.4.2 Computer Forensic Reference Data Sets 11

2.5 An Examplary Schema: MITRE’s CWE 12

3 Schema and Deduction of test cases 13
3.1 Review of Seven Pernicious Kingdoms 13
3.2 Construction of a New Schema . 15
3.3 Deduction of Test Cases . 19

4 Implementation of test cases 23
4.1 Tools Used During the Implementation Phase 23
4.2 Test Set 1: File System . 25

4.2.1 Directory Loops . 26
4.2.2 Partition Tables . 34

4.3 Test Set 2: OS Specific Files . 39
4.3.1 Windows . 39
4.3.2 Mac OS X . 46
4.3.3 Linux . 48

4.4 Test Set 3: User Files . 50
4.4.1 Multimedia Files . 50
4.4.2 Office Files . 52
4.4.3 Various . 55

5 Testing forensic software (Evaluation) 59
5.1 Evaluated Software . 61

6 Contents

5.2 File System Based Evaluation . 62
5.3 Operating System Based Evaluation 64
5.4 User File Based Evaluation . 68
5.5 Evaluation Results . 70

6 Conclusion 73
6.1 Advantages of Structured Testcases and Summary 73
6.2 Future Work . 74

A Acronyms 77

B Test Cases On CD-R 79

C Complete Schema Tree 81

D Screenshots 83

E Radamsa Mutators 85

F Test Sets 86

List of Figures 151

List of Tables 153

List of Listings 155

Bibliography 157

1 Introduction

1.1 Motivation

The field of Cyber Forensics is part of the digital world since the early days of
personal computers, but techniques that were once mostly a manual search of data
have been a subject to changes in the course of time [Cha09]. Nowadays digital
forensic investigators have to handle a massive volume of digital data and the amount
is constantly growing. To facilitate the examination process software programs have
been created that automate a lot of tedious tasks, such as extraction of all archive
files, user-defined keyword search and creation of human-friendly reports about USB
devices that have recently been connected to the investigated system or software that
is installed on it.

As forensic reports are often used in court and thus have an important influence on
the decision between freedom and jail, it is extremely important that investigators
work thoroughly and that their results are always correct, or that errors are at least
detected whenever they occur. Because of that it has become common practice in all
forensic sciences to verify the correctness of the tools in use [ILA02]. The ISO stan-
dard 17025 ([ISO05]) describes an abstract approach to testing, and some laboratories
decide to show their compliance to it by getting certified.

Following the idea of testing, various people have tried to also verify the correctness of
the software tools used for Digital Forensic tasks [Bru11]. With the Computer Foren-
sic Tool Testing Project (CFTT) the US-American National Institute of Standards
and Technology (NIST) tried to formulate a standardised methodology of testing
such software[NIS13a]). However, one cannot evaluate their results as test cases are
not published directly on the CFTT website and the documentation on test assertions
and test plans remains rather abstract to be applicable to a broad range of tools.
Carrier ([Car10]) presents image files of hard disk partitions containing specifically
crafted files that are meant to complement the work of the CFTT. Unfortunately the
vast majority of testing of forensic software performed to date follows a functional
driven approach. This is a technique typically used in software development which
analyses if the intended functions of a software work as they should. However func-
tional testing does not cover problems that may arise when software is (mis)used in
a way the developer did not think of. First unstructured tests ([WFM13], [NPSB07])
have already shown that there is a huge potential in finding and exploiting software
bugs by applying other testing techniques.

2 1 Introduction

Another problem is the lack of structured test environments. Given the fact that
everybody tests on its own one can easily imagine how incomplete the results must
inevitably be. Different investigators make different experiences in their everyday
work and when testing their equipment they will most certainly focus on scenarios
that they are familiar with.

This thesis tries to develop a systematic testing approach that can serve as a guideline
during forensic tool testing. By organising the information that flows into and out
of software as general as possible we want to help testers think outside of their
typical scope. Additionally, test cases are derived from the laid out schema to give
examples on the methods one could use to go beyond functional testing. However, it
is extremely important to always keep in mind the limitations of this thesis specified
in Section 1.3.

1.2 Related Work

Literature on Anti-Forensics

The field of finding attacks against digital forensic software, often called anti-forensics,
is relatively new. Therefore, one does not find as many papers as in other disci-
plines when consulting relevant databases. For example, when searching for the
term “anti forensic” we found 760 papers on Google Scholar, from which over 90%
are written after the year 2005. One of the earliest sources covering anti-forensics
is [Rog05]. Rogers there defines the term and presents some basic but still mostly
passive ideas (defensive measures without attacking anything). It is very noteable
that although there has not been much research in this field until 2005, Rogers
already has a few slides that cover the idea of directly targeting the forensic soft-
ware.

Two years later Newsham et al. have published a paper that shows the rapid devel-
opment in the research field [NPSB07]. They leave the path of functional testing
and use fuzzing as well as “targeted fault injection” to find bugs caused by program-
ming errors and corner cases that the developer did not think of. A major drawback
of this work is that the testing is performed rather unstructured and no explana-
tion is given why a certain test-case has been created or why others have been left
out.

Wundram, Freiling and Moch [WFM13] present attacks that build upon the work
done by Newsham et al. They revisit well known but still relevant vulnerabilities
and expand them by showing the first code injection attack against a commercial
forensic tool. The idea to target the HTML reporting function is quite interesting
and useful but again the paper lacks an overall structure of the outlined vulnerabil-
ities.

1.2 Related Work 3

Literature on Taxonomies of Software Vulnerabilities

While there are not that much papers covering anti-forensic topics the situation is
completely different for work that defines taxonomies of software vulnerabilities. One
of the most important articles in this field has already been published in 1994 by
Landwehr et al. [LBMC94], and it is by far not the first one. Many other taxonomies
are based on this paper and we found references to it numerous times during our
literature research. However, due to the early date the picture of security flaws is
somewhat outdated. Additionaly, Landwehr et al. write in their “Limitations” sec-
tion that “the development of this taxonomy focused largely, though not exclusively,
on flaws in operating systems”. This is why their categories, genesis, time of intro-
duction, and location, are not really useful as a base for this thesis. It is improbable
that a forensic tool contains intentional flaws as well as it is uninteresting from the
user’s perspective whether a flaw has been introduced during the creation of the
application or during maintenance, e.g., by an update.

For a better overview on different taxonomies Igure and Williams [IW08] have created
an extensive roundup of numerous security based taxonomies published between 1974
and 2006. They split the paper in both attack and vulnerability based taxonomies.
As no actual taxonomy is given on its own their work is not helpful for this thesis in
a direct way, instead it shows that none of the mentioned work does cover forensic
software and the related risks as a central aspect. However, one should keep in mind
that Igure and Williams may have missed a taxonomy, or that a new one has been
produced recently.

One of these unmentioned taxonomies, though a very mentionable one, is the paper
“Seven pernicious kingdoms” by Tsipenyuk, Chess and McGraw [TCM05]. The seven
kingdoms, a term the authors adopted from biology, are groupings for different types
of software flaws. These kingdoms build the origin of the schema presented in this
thesis. They are also the core of the Common Weakness Enumeration (CWE) project
managed by the MITRE corporation. A deeper insight in this project is given in
Section 2.5. At this point it should only be noted that MITRE is the organisation
behind the well known Common Vulnerability Enumeration identifier system that has
a knowledgeable reputation among computer (security) professionals. After working
with the taxonomy of Tsipenyuk et al. in more detail we found some shortcomings
for our special use case, such as the strong focus on source code. This aspect is,
together with others, discussed in Section 3.1.

To conclude the review of related work we would like to note that, although there is
not much scientific work in the area of anti-forensics, not every paper or presentation
found during the research phase can possibly be mentioned in this section. On the
taxonomy side the variety is even more vast. The presented work only shows the most
important influences on this thesis from both research fields.

4 1 Introduction

1.3 Contribution and Limitations

In this thesis we present a schema that can serve as a structured testing guideline.
We therefore build upon the taxonomy by Tsipenyuk et al. and enhance it to better
suit our needs. We design a tree structure that divides the abstract term Forensic
Tool into different areas that can be of interest during testing. Due to the limited
time given when working on a Bachelor’s thesis we focus on software tools only
and exclude the fact that hardware can be attacked as well. Interested readers will
find a very brief passage on hardware attacks in the conclusion at the end of this
thesis.

From the previous chapter we learned that there are many taxonomies dealing
with security flaws, even if they use different terms for that fact. Still, all of
them treat user input only as one of many aspects, but it clearly is the main
part of forensic work, where data of other people has to be analysed. This is why
we designed our schema tree to reflect various different types of data in its leaf
nodes.

In the second part of the thesis we implement multiple test cases that are derived
from these leaf nodes. Again we have to set limits to our work because of the sheer
amount of forensic tasks, storage systems in use and different file formats one could
use to encode data. We focus on the most common and best researched forensic
analysis method, the Post Mortem Analysis. There, complete hard disk copies or
loose files gathered from a computer are looked at on a system different from the
investigated one (hence the term post mortem in contrast to a live analysis). Because
everybody who expects to get into a forensic investigation one day can prepare such
files prior to that, we believe that they constitute a major risk for forensic software
and should be tested most. Certainly, every investigator testing her software in
use should also think of the other leaf nodes in the schema and never forget that all
testing is in vain if the forensic workstation itself is not secure from hacking attempts
happening live, that is, during the investigation of the evidence. The test cases are
evaluated by analysing them with common digital forensic software tools. We will
depict their usefulness depending on the results. Not least because of the high cost
often associated with highly specialised software, the evaluation is limited to some
well-known commercial software products, as well as to some open source (or at least
free) software.

Additionally to this thesis we will propose the results to standardisation institutions
such as NIST and promote them within the forensic community, possibly by pub-
lishing them on the inofficial CFTT mailing list [Anoa].

1.4 Organisation of This Thesis 5

1.4 Organisation of This Thesis

The structure of this thesis follows mostly the order used in the previous section.
First of all we provide some background on the topic and explain basic concepts in
Chapter 2. We then outline our schema and explain its development process, as well
as derive test cases from it in Chapter 3. In Chapter 4 we describe the precise imple-
mentation of them, thus giving ideas on how one could create own test sets. The eval-
uation of the test cases follows directly in Chapter 5. Finally we conclude the results
and present an outlook into the future in Chapter 6.

2 Background

This chapter provides insight into the most important ideas needed to understand
the concept of digital forensics and a possibly related anti-forensic risk. Furthermore,
some important standardisation and classification institutions are presented.

2.1 Digital Forensics

A common question asked by people that are not familiar with computing and dig-
ital data is about what computer forensic scientists exactly do. They know the
term forensics, but associate it with forensic doctors examining mortal remains or
with police officers gathering fingerprints at a crime scene. In general forensics com-
prises everything court related, as the word originates from the Latin word forum
– market-place, which was where in ancient Rome people would gather for judicial
reasons [Oxf13].

Digital forensics is the subfield of gathering evidence linked to everything related
to IT systems. The term system in that case includes devices (personal computers,
servers, mobile phones, ...) as well as storage media (external hard drives, USB sticks,
CDs ...). Most of the time the data residing on these artifacts is of forensic interest,
but it is also important to investigate the hardware itself.

When finding an item of interest, a digital forensic investigator must first make sure
that it remains unchanged. Depending on the situation it must be decided whether to
do a live analysis of the system or to only analyse switched-off devices, an approach
called post mortem analysis. The data on it must then be acquired safely, so that it
is modified as little as possible and all changes are documented. In the post mortem
case this is mostly achieved by using dedicated devices that physically prevent write
access to a device, so called writeblockers. After making a working copy of the
evidence data it has to be analysed. Depending on the type of forensic investigation
this step can include different tasks. If for example the computer of a person accused
to possess or distribute child pornography is investigated, the analysis step would
include searching for image or video files, but also analysing the visited websites and
possible chat protocols or email conversations. Finally, a report has to be written
which is understandable for people not being technical experts, e.g., judges. This
step has to be conducted with particular care, because not all forensic investigators
are directly employed by law enforcement authorities and might therefore not be
exactly familiar with the formal requirements.

8 2 Background

2.2 Digital Forensic Software

Investigators are nowadays challenged by a surprisingly simple problem. Digital
storage amounts are constantly growing, a fact that we encounter almost every day,
when reading about new data centers or just by comparing a typical computer setup
from the daily newspaper advertising supplement, with one we saw one or two years
ago. When analysing such a system under forensic viewpoints there is today much
more data to look at than in the early days of computing. To keep up with the
developing technology, hard- and software tools have been created to support digital
forensic tasks.

There is many specialised software, some of it is downloadable free of charge while
other programs are advertised as complete packages and cost lots of money. A
certainly not representable list of tools with more than 75 entries can be found on
the wikipedia [Wik13].

Software can help forensic experts during all steps of an investigation. The bit-level
cloning or logical copying of data, whichever approach is chosen, would not even
be possible without the help of software reading the data. Other software helps
reading out proprietary data formats or automates part of the analysis step. All big
commercial software tools are for example able to automatically traverse through all
directories of a hard disk image and search for files containing special terms that
the investigator defined beforehand. Therefore, most of the tools can automatically
extract archive files found to search their contents as well. It is even possible to
generate parts of the final report by using software. Some tools can create nicely
formatted lists of all removable devices that were once connected to a computer, or
of all the software that is installed on it.

As a conclusion we can retain that there is a multitude of software assistants for the
daily routine in a forensic laboratory.

2.3 Anti-Forensics

Anti-Forensics, sometimes also named counter forensics, is in general a term describ-
ing every approach that makes the life of a forensic investigator harder. A formal
definition of the term, and the one we use in this thesis has been formulated by
Dr. Marcus K. Rogers in 2005 [Rog05]. The choice fell on it because it is the oldest
one that we found.

Attempts to negatively effect the existence, amount and/or quality of
evidence from a crime scene, or make the analysis and examination of
evidence difficult or impossible to conduct.

2.3 Anti-Forensics 9

The relatively recent date shows that the topic has long been outside of the focus
of the scientific community. However, methods known for a much longer time are
since then called anti-forensics, for example cryptography that is heavily researched
for at least 40 years now (standardisation of DES in 1977). Rogers, as well as others
([Har06], [Gar07]) categorise some classic anti-forensic threats which all describe the
passive methods mentioned in Section 1.2. All classifications know some kind of data
hiding, where evidence is stored in unusual spaces, encrypted, or packed into other
unsuspicious files by use of steganography techniques. A second method is called
destroyal or wiping of data. In that case files are not simply deleted, but overwritten
with a series of either random or zero bits. This technique can be more stealthy than
the hiding approach, but obviously wiped data is lost and can not be accessed at a
later time. The third technique known in classic anti-forensics belongs into the area
that Rogers calls “trail obfuscation”. Around the real evidence, multiple instances
of fake evidence are created to consternate the investigator. A practical example of
obfuscation and annoyance is a collection of script files uploaded to github in 2011
[Int11] by a user called int0x80. One of them is for example a shell script creating lots
of files using random data and encrypting it with an also random key. Afterwards
the files are deleted insecurely. If an investigator would search for deleted files after
this script has been run he would recover thousands of encrypted archives and had to
choose whether to try bruteforcing them or leave them out, risking to skip valuable
evidence.

More interesting in the field of anti-forensics is the modern threat of targeted attacks
against the forensic software. This is what lastly made anti-forensics popular as a
research field ([NPSB07] [WFM13]). While the classic techniques pose no threat
to the reliability of the evidence that could be found (one could only miss real
traces), modern anti-forensics targets the investigation process as a whole. Data
is made unreliable, as the security and integrity of the software that acquired it is
undermined. By exploiting flaws found in forensic software an attacker can basically
reach one of the following goals:

1. Crashing the forensic software (Denial of Service)

2. Causing unspecific misbehaviour of the forensic software, such as leaving out
a certain subfolder

3. Gaining control over the software, thereby defining its output, with the possi-
bility to damage the original acquired data or to add false evidence of either
incriminating, exculpating or none-credible and thereby legally attackable kind.

The first two aspects are already quite serious. Often an investigation has to be
finished in a short time frame and software that constantly crashes costs much of the
precious time. Knowing all weaknesses in the software a forensic expert could use
multiple tools to be sure everything has been analysed completely, but that again
would cost time for setup and comparison of the results.

10 2 Background

The last aspect however is a disaster. If software could be a target of such attacks its
reliability in court is very doubtful, as stated by Ridder [Rid07]. It could already be
sufficient for the defense lawyer of an accused person to raise enough questions and
thus making the judge decide to not consider the findings of the forensic analysis in
its sentence.

2.4 Standardisation of Digital Forensic Tool Testing

Standardisation is an approach that is more typical for forensic works in the USA
than it is in Germany, a fact explained in the following. One of its main uses is
to provide help in courtrooms, both to forensic witnesses who can support their
findings by pointing out that the tools they used have been tested by well-known
organisations, as well as to judges who often are no experts in the technical field and
thus could not easily assess if the forensic witness used reliable equipment. Ridder
[Rid07] explains different criteria, known as the so-called Daubert standard after a
famous trial, that may be used by U.S. courts to evaluate the reliability of evidence,
among them being the factors “whether the theories and techniques employed by the
scientific expert have been tested”, “whether they have been subjected to peer review
and publication” and “whether the theories and techniques employed by the expert
enjoy widespread acceptance.” All of these might be supported by standardisation
approaches.

Although such concepts do not automatically apply to other countries standardisa-
tion might as well be helpful when reasoning in German trials. Typically, § 261 Straf-
prozessordnung (StPO) applies which is known as “Freie richterliche Beweiswürdi-
gung” [HR10] –free consideration of evidence by the judge. In real life scenarios
this means that an expert witness has to make plausible that her report is correct
by explaining the abilities of the tools used, most ideally also by pointing out their
shortcomings and reasoning why these do not pose a threat to the concrete findings.
One can easily imagine that a tool being standardised by well-known organisations
such as NIST can be a supportive argument.

2.4.1 Computer Forensic Tool Testing Project (CFTT)

NIST is known for publishing standards in different areas of interest. Recently it has
been in the news along with the discussions around the Snowden leaks and possible
backdoors inside a standardised cipher [Zet13].

One of the projects running at NIST is the Computer Forensic Tool Testing Project,
which goal it is to raise the reliability of computer forensic tools, both soft- and hard-
ware, by “development of general tool specifications, test procedures, test criteria,
and test hardware” [NIS13a].

2.4 Standardisation of Digital Forensic Tool Testing 11

In a typical approach, NIST [NIS01] decides on a feature to test and than chooses
tools that support this feature. Requirements are formulated and test assertions de-
rived from that requirements are developed. Then test cases are produced that reflect
the requirements. Finally NIST publishes the results alongside with a documentation
of the test assertions and the created test cases.

When reviewing the test case descriptions we found test case DA-25 describing the
reaction of a tool to corrupt image files [NIS05]. It would have been possible to
define all test cases created in this thesis as specialisations of this one, as it is very
abstract and anti-forensically prepared evidence always deviates from the normative
behaviour, making it corrupt. However, we feel that the requirements defined by the
CFTT are not strict enough for our needs. The only required behaviour of a tool
is that it “executes in execution environment XE”, but XE is completely unspecified
and only an abbreviation for any execution environment one can think of. Plain-
talking, this does not mean more than that the tool starts. All other assertions
that are to be tested remain optional. In this thesis, more requirements are made
obligatory. Details on this topic are given in Chapter 5, the test cases are listed in
Appendix F.

The abstract definition of testing is a general problem all documents published by the
CFTT have in common. It remains unclear why a certain tool is chosen to be tested,
which test assertions were made up for what reasons and why test cases were created
while others might have been left out. Additionally, there are categories that seem
as if they would have been forgotten somewhere in the testing process. The NIST
website for example lists a category “Forensic String Search” where only a single
document, a public draft for comments on the tool requirements specification, has
been published since 2008. When browsing the website it remains unclear whether
or not the category is still subject to active research.

In spite of all drawbacks the program might have, the CFTT is the only major
approach to testing forensic software, and instead of talking it down, support would
be in the interest of everyone in the forensic community.

2.4.2 Computer Forensic Reference Data Sets

Computer Forensic Reference Data Sets (CFReDS) is another project residing at
NIST [NIS13b]. It is mainly a website listing about a dozen data sets that are meant
to be test cases for forensic tools. The website states that some of the test cases
are provided by the CFTT project but it remains unclear which of them these are
and from which of the various CFTT tests they stem. The website also mentions
briefly how own test cases can be created and how they should be documented.
The information thereon does not go into detail, but the advice to completely doc-
ument everything that a user needs to fully reproduce the results helped in improv-
ing the test case documentations that we created (see Appendix F). Hyperlinks to

12 2 Background

other test images are provided, for example to those of Brian Carrier [Car10] whose
goal it has been to “fill the gap between extensive tests from NIST and no public
tests”.

CFReDS seems to be a much smaller project in comparison to CFTT, but it could
be a place to publish community-based test cases dealing with anti-forensics, such
as those that are developed in this thesis. Not least, having the test cases published
by a project associated with an organisation as big as NIST will certainly enhance
the reception of them.

2.5 An Examplary Schema: MITRE’s CWE

The non-profit organisation MITRE is the founder of the CVE system. It is well
known for providing a numbering scheme of vulnerabilities detected in real life soft-
ware. With the CWE identifiers MITRE tries to achieve a similar organisation
schema for general weaknesses as cross site scripting or buffer overflows in contrast
to actual vulnerabilities. The work of MITRE is based on several sources, among
others the paper mentioned in Section 1.2 and the Preliminary List of Vulnerability
Examples for Researchers (PLOVER)[Chr06].

The CWE list is not only a flat chronological numbering of weaknesses but more a
hierarchical classification of them. On the website [Cor13] one can both access online,
as well as download different views of the complete list. All of them are available
in graphical form as tree-like structures and as lists that can be read from top to
bottom. The website links various information to a CWE entry when browsing it, for
example Common Vulnerability Enumeration (CVE) identifiers that are associated
with this type of weakness, an explanation of the possible impacts and sometimes
examples of bad code.

Unfortunately the complete CWE list is quite complex, enumerating 940 different
weaknesses that vary from very general ones as CWE-693 (“Protection Mechanism
Failure”) to very specialised entries as CWE-82 (“Improper Neutralization of Script
in Attributes of IMG Tags in a Web Page”). Due to to the complex nature and the
general purpose approach of the CWE system we decided to base our schema not
directly on it but on its sources, however taking over the idea to organise the schema
as a tree structure.

3 Schema and Deduction of test cases

Taking into account the basic concepts of digital forensics and its related software,
explained in Sections 2.1 and 2.2, we now set up our schema to give a structure to
forensic software testing. As explained in Section 1.2, the schema is based on the
ideas of Tsipenyuk et al. While working with their ideas we found however that
there are drawbacks when applying them to forensic software. This is why we first
have a more detailed look on the basics of their taxonomy in Section 3.1 before
building our own schema in Section 3.2. Finally, Section 3.3 deduces the test cases
implemented in Chapter 4 and gives ideas on how to build further tests according to
the schema.

3.1 Review of Seven Pernicious Kingdoms

In Section 1.2, a first look on the paper in which Tsipenyuk et al. originally described
their taxonomy (in the following referred to as the kingdom taxonomy) is given.
There, it is already pointed out that some aspects do not work out that well in
conjunction with our needs.

First of all the kingdom taxonomy is based on the assumption that one has access
to the source code of an application. This is perfectly fine for the target audience
Tsipenyuk et al. had in mind, namely the developers of the software themselves.
Although developers of forensic software should of course do extensive testing before
releasing it, we want to target the average forensic investigator that most of the
time is just a user. Among the commonly used forensic software tools, most have
commercial license models and do not provide access on a source code level. This is
why we need an approach that treats software as a black box component, as shown
in Figure 3.1.

To understand the other shortcomings of the kingdom taxonomy, a list of all king-
doms together with a brief description is given in Table 3.1. A core concept of
forensic software is that it heavily relies on input provided by untrusted users. Input
validation should therefore not only be one of many equal aspects. In general, all
vulnerabilities in software are only accessible if some input is given to trigger them.
The API abuse kingdom is well-suited to be included in our schema. It describes a
special type of input and provides a good naming scheme to separate it from other
input classes. Security features though are more an abstract concept than a concrete

14 3 Schema and Deduction of test cases

Figure 3.1: The forensic software, depicted as a blackbox.

Table 3.1: The kingdoms from the taxonomy of Tsipenyuk et al.

Name of Kingdom Description
Input Validation and
Representation Mistakenly trusting input, causing buffer overflows, cross

site scripting, SQL injections and other vulnerabilities
API Abuse Possibility to misuse an API and thereby causing security

issues
Security Features Errors related to authentication, access control, cryptogra-

phy and other software functions directly related to security
Time and State Vulnerabilites related to temporal aspects. Examples in-

clude race conditions and deadlocks.
Errors Wrong error handling or error messages that give out too

much internal information.
Code Quality Vulnerabilites that are based on poor quality of the source

code.
Encapsulation Failure to separate certain parts of an application from

each others. This could mean not correctly sandboxing
an application or not separating different user accounts
enough.

Environment Vulnerabilites that are not caused by the source code but
introduced through other means, e.g., by automatic com-
piler optimisation

3.2 Construction of a New Schema 15

software feature. They are not directly mentioned in our schema but have a branch
inside the tree where they belong to, together with the time and state vulnerabilities.
Section 3.2 has more details about that. For the errors kingdom, a similar idea as
for input validation holds. Every error needs a trigger and the exploitation of error
handling will furthermore lead to another vulnerability, such as the possibility to
overflow a buffer. It is somewhat redundant to have a dedicated kingdom for this
type of weaknesses but it can make sense when reviewing programs on a source code
level. As we do not want to do that, we keep this kingdom out of our schema. In
contrast, code quality is a kingdom we do not see any use for, not even in the form
Tsipenyuk et al. use it. Obviously every weakness is somewhat based on poor code
quality, with the exception of errors related to the last kingdom, environment. Any-
way, due to the fact that we target the software as a black box it is irrelevant how a
vulnerability was introduced. This is something developers of software have to think
about, not forensic investigators. Finally, encapsulation is again more a concept
that gets violated by a specific vulnerability. Often one does not know which parts
of software should be encapsulated from each other by just looking at them, but
when a flaw in the handling of specific user input is found an attack can be crafted
to violate the concept. Certainly, the exact implementation details of attacks are too
fine-grained to be covered by our schema.

At first sight it might now seem that the kingdom taxonomy is not suited at all for our
needs, having just a single kingdom that is directly adoptable. The next section will
however show that most of them are found in the schema tree we develop, although
they might not be directly visible. Their basic ideas are still valid and well-researched
concepts we can build upon.

3.2 Construction of a New Schema

As already said, the goal of the schema presented in this thesis is to guide users
of forensic software. It categorises different types of input to help investigators
structure their search for possible vulnerabilities. Before coming to the input part
the root level of the schema is created. Figure 3.2 shows two general possibilities
of analysing a forensic software tool, which we define as schema base, or root node.
Although we want to focus on a black box approach it is important to keep in mind
that source code analysis is in theory also possible and can at least be applied to
open source forensic software. The node is in some way a renamed version of the
code quality kingdom, but not entirely as quality aspects also play a part in the the
black box branch of the schema.

Looking at source code analysis one can basically do two different things. A good
start can be to automatically analyse the source code with tools like RATS –the
Rough Auditing Tool for Security [Che09], which is chosen as an example because
of its open source availability. Automatic analysis tools are quite strong in finding

16 3 Schema and Deduction of test cases

Figure 3.2: The root level of the schema tree.

memory errors through use after free, use of uninitialised variables, use of depre-
cated or unsafe functions and similar vulnerabilites. They are however still quite
error-prone and automatic analysis should always be accompanied by a manual code
review [OWA08]. For a deeper insight into this topic the reader is advised to have a
look into the OWASP Code Review Guide cited above, which will likely be available
in an updated version as of January 2014.

By only reviewing source code, one has no possibility to detect vulnerabilities belong-
ing to the environment kingdom. These errors only get introduced at compilation
time and are found during a dynamic analysis of the software. As one has often
to deal with commercial software we call that branch black box testing, but it is of
course also possible to perform dynamic analysis with knowledge of the underly-
ing source code. The further subdivision of the schema, depicted in Figure 3.3, is
not affected by this difference. Dynamic analysis can, as well as source code anal-
ysis, be done both automatically and manually. Therefore, from this level on the
schema focusses more on different input types the software can have. During the
implementation in Chapter 4, we also present an automated approach called fuzzing.

The two main types of relevant data inputs into forensic software are data generated
by interaction with the tool on the one hand and data put in to be processed by
the software on the other hand. The latter is the more interesting type because it is
under the control of potentially malicious subjects, so we will start with a description
of interactive data before turning to the data processing. In general interactive usage
can both be intentionally malicious or indadvertently damaging. It is something only
the investigator should have access to. Software errors found in this area are likely
to belong either to the time and state or to the security features kingdom. This
is because when interacting with the software it is very important that it correctly
manages all kinds of access-right related functions, such as secure login and different
user accounts. It is advised that forensic software is only run in trusted laboratory
environments. However, software used during live forensic analyses must inevitably
run in dangerous environments. Therefore, the interactive part might not be as hard

3.2 Construction of a New Schema 17

Figure 3.3: The middle level of the schema tree.

to exploit by a malicious attacker as thought, and if the attack is succesful the result
can be disastrous.

One can interact with software in different ways, either by use of an API provided
by the software developer or by using an interface, both graphical or textual. The
API node is identical to the API abuse kingdom explained earlier. The node is
marked to make clear that it is not a real leaf node. It can be subdivided fur-
ther, for example to differentiate different API types, but this is outside of the
scope of our schema, also because public APIs are rather uncommon in forensic
software.

On the other hand there is the usage of an interface. For reasons of clarity the leaf
nodes are only shown in the full schema view in Appendix C. Interaction through an
interface comprises all settings that can be made, as well as all text fields, buttons,
menu entries and combinations of them. The kind of the interface is most of the time
irrelevant, and one must keep in mind that while textual command line interfaces
accept by nature more different inputs of any kind than graphical user interfaces,
these in turn contain other dangers such as the accessibility via a web browser. This
part of interaction is considered in the full schema, which further divides the interface
into a remote branch. Some software has a client-server architecture to be accessible
from multiple computers in a network. Sometimes computationally intensive tasks
are also designed to be run on a dedicated server machine, primarily those that are
related to big data volumes. The configuration of the server is often done through
a web interface, as most developers have knowledge of web programming and see it
as an easy and fast way to provide graphical feedback to the user. This is in fact a
dangerous idea as the OWASP Top Ten list of Web Application Errors 2013 [OWA13]
lists eight out of ten errors with a prevalence of at least common, the highest one
being very widespread.

That harmless looking web application errors can lead to a complete compromise of

18 3 Schema and Deduction of test cases

the whole investigation environment was shown by DigiTrace GmbH. There, a test
of a tool believed to be a hardware writeblocker was conducted and it was found
out that the device was indeed an embedded Linux system. Even worse, it had a
vulnerable web configuration interface running under the super user account. After
finding a command injection the investigators were able to write to storage devices
containing evidence data [Wun13].

Figure 3.4: The relevant leaf nodes of the schema tree.

The right branch, data processing, is further refined in Figure 3.4. As explained in
Section 2.1 a forensic investigation is either a live analysis, or the later analysis of
loose files and disk images collected from a system. Live-Forensic data is acquired if
one is interested in evidence that would change after the system has been switched
off. This is for example the case if reasonable hope exists to observe the actions of
an attacker that still actively uses a system. Such evidene includes data residing in
volatile storage areas as Random Access Memory (RAM) and even processor regis-
ters. It also includes data that is indeed saved on non-volatile storage but would not
easily be accessible. This fragile data mostly resides inside of cryptographically secure
disk images (TrueCrypt, Bitlocker, ...) that are mounted in a running system. Note
that RAM-disks are typically considered fragile data over volatile storage, as they
are mounted as normal hard drives. In live analysis one is also interested in data that
is never stored on a computer. This can be any kind of inter-system communication,
such as network traffic (GSM, WiFi, Ethernet, ...) or communication with attached
devices (over USB, SATA, Firewire, ...). Electromagnetic radiation of devices or the
information shown on the monitor also belong to those never-stored materials. With
the rise of new techologies, leaf nodes in this part of the schema will probably be
subject to change and should be rechecked regularly.

The biggest risk of a live-forensic analysis is that the investigator must invevitably
work on the “opponent’s” system. One can in that case never be perfectly sure
that the data is authentic. Hendrik Adam at DigiTrace GmbH has developed a
proof-of-concept rootkit, called anti forensic rootkit (afr), to raise the awareness
for that problem. The rootkit lives on the computer of a suspect and hijacks cer-

3.3 Deduction of Test Cases 19

tain processes if an analysis is detected. Currently, for example output of false
hash values as well as randomly overwriting the RAM to crash the system are sup-
ported [WA13].

A big and well researched part of forensic analyses is however post mortem data.
Most forensic software that we have access to for evaluation is targeted at it, there-
fore we weight it the most important branch. In Figure 3.4, three nodes are high-
lighted. These are considered the most important nodes in the schema and in fact,
Chapters 4 and 5 are based only on them. As a starting point, the next section will
derive the test cases implemented.

3.3 Deduction of Test Cases

The basic problem to date is that testing of forensic software is most of the time done
by only a few people in an unstructured way. As a fully automated approach would
be at least complex, if not impossible, due to the high amount of tools available
that all have many different functions, a semi-automated solution is presented in
the following. Like for source code analysis, automation can never replace manual
search. It is instead an extension to it and can accelerate the testing for basic
vulnerabilities.

At first we will have a look at disk images and loose files, because they can eas-
ily be prepared not only by tool testers, but also by potentially malicious sus-
pects.

File System Data is strictly speaking all part of data on a storage device that is
responsible for making the device read- and writeable by computer systems on a
very low level. In practice many different file system types are known, the most
important ones being FAT 32 for general purposes, NTFS for Windows systems,
HFS+ for Mac computers, and EXT4 which is the standard file system of Linux.
In our test cases we invalidate the structure of every file system, possibly causing
problems for the software tools analysing them. One level below the file system
one finds the so-called partition tables. These are data structures, either the older
Master Boot Record (MBR) or the newer GUID Partition Table (GPT), that tell
the operating system of a computer where different partitions on a file system can
be found and what size they are. Because of partition tables a storage device can
have more than one partition and therefore also different file systems. The test cases
we develop also contain multiple examples for both MBR and GPT partition tables
that are corrupted in one or another way.

The second node belonging to post mortem analysis in the schema is called OS spe-
cific files with the abbreviation OS referring to the operating system of a computer.
We call all files OS specific that are not directly created by the user of a computer, but
instead represent data managed by the operating system itself. Of course, this data

20 3 Schema and Deduction of test cases

is different for every OS, therefore we build a test set containing different test cases
for Windows, Mac OS X and Linux. For all operating systems, we have a look on the
database where the file search index is stored. This is an index containing information
about the folder structure and sometimes even about contents of single files, which
is why it has a very high value for forensic investigators. In the case of Windows, the
desktop search stores its index in the proprietary ESE database format. Other pro-
prietary formats we manipulate are the Windows registry, where meta information
about all types of system activity is stored, event log files containing logging infor-
mation of different kind and the files managing Jump Lists, a feature introduced in
Windows 7 and explained in more detail in Section 4.3.1.

On Mac OS X the search function is called Spotlight, and the Spotlight Database is
of interest for us as well. Instead of Windows, where the registry is stored in only a
few single files, Mac OS X manages similar settings in many small files of the type
plist which we manipulate, too. A bit less interesting are Mac logfiles, because they
have a plain text format. This is not less dangerous by definition, but it is neither
encouraging to write (attackable) software for analyses if a file format can also be
read manually. We manipulate logfiles nevertheless to show the dangers of parsing
seemingly harmless file types.

With Linux being an open source system, even more logfiles and settings have a
simple plain text format. This makes it on the one hand easy to administrate for
experienced users, but hard to manipulate maliciously. Injection attacks are here
still possible, but the harder to detect crashing attacks by manipulating tiny parts
of complex file structures can not be applied. For example purposes we again ma-
nipulate the search database, this time belonging to the command line program
locate, and the .bash_history file, where every command typed is stored by de-
fault.

The third schema leaf node, User Files, is also the broadest one. Thousands of ap-
plications exist to make the life of computer users easier and many of them have
proprietary data formats. The situation for forensic software could not be harder,
however software developers try to make their programs understand as many file
types as possible, thereby introducing many additional attack vectors. Even pro-
grams targeted at a single file format often have security vulnerabilities, as has more
then one time been demonstrated by the Acrobat Reader of Adobe Inc. [Ado13]. It is
therefore very likely that errors in forensic software do exist. To find them we create
a multitude of different files used by applications typically present on a computer.
Among them are image file formats, music and video data, office files and different
email formats. Some of them are manipulated by hand, others are automatically
fuzzed.

Due to the massive amount not everything can be targeted by our example test
cases. When creating own tests one can on the one hand expand the examples
given in this thesis by choosing other file formats that the forensic application of
choice supports. A good example are SQLite databases, which are heavily used by

3.3 Deduction of Test Cases 21

modern web browsers, in Windows 8 and by smartphone apps. These three software
types will probably make up a large amount of future evidence, and provide a good
starting point for own test cases, as a testing of SQLite databases had to be left out
due to time restrictions. When concentrating on a special software one can most
certainly create manipulated files that are more complex than the ones presented,
simply because every format takes some time to understand before the real dangerous
exploits come to mind.

On the other hand it is possible to do more research on the leaf nodes not rep-
resented in the test case implementations. Using broken config files could crash a
software program, while making contradicting settings in different places could lead
to security holes. When interacting with software, it is possible that clicking through
menu entries in a very special order that the developer did not think of, unwanted
states in the program flow can be reached. It is also very interesting to research
the effect of corrupt memory dumps or malicious network traffic logs on analysis
programs.

Every aspect related to input that can be controlled from the outside can some-
how be vulnerability-affected. This is why a broad adoption of the testing method
and publication of every test case created will help the whole forensic commu-
nity.

4 Implementation of test cases

In this chapter the creation process of our example test cases is explained. Every
highlighted node from Figure 3.4 is presented in a section on its own and called a
test set. Every test set is in turn subdivided into the test cases that were set up
in Section 3.3. The chapter is ordered in a bottom-up manner, with Section 4.2
starting with the low-level test cases related to file systems and partition tables.
Section 4.3 then covers every test case dealing with files that are managed au-
tomatically by the operating system. Finally, Section 4.4 explains the test cases
related to files controlled by the computer user. Before diving into the technical
explanations, some basic tools that turned out to be very helpful are presented in
Section 4.1.

4.1 Tools Used During the Implementation Phase

Operating Systems

In our case, the general setup for all implementation tasks consists of a computer
running Mac OS X 10.6.8. Also, a Virtual Machine (VM) running Kali Linux
1.0.5 [Off13a] is used for various tasks. The choice of the distribution Kali is some-
what arbitrary, but it comes in useful in Chapter 5, because many open source
forensic tools are already preinstalled on it. The Windows test cases in Section 4.3.1
are created with the help of a Windows 7 VM. In both cases VirtualBox in version
4.2.18 [Ora13a] is chosen as the virtualisation software and its Shared Folder feature
provides an easy way to have a common workspace throughout all three operating
systems.

Tools Within the Operating Systems

Apart from VirtualBox only the hexeditor Synalyze It! 1.6 [Peh13] is used on the
host system. A great feature making the binary view and edit of various file types
easier is its support for different grammars. These are files describing the structure
of a data format and after applying them Synalyze It! offers the possibility to
highlight and directly manipulate the different fields of a file. Figure D.1 in the
appendix shows an example usage of the PNG grammar to highlight the header
checksum.

24 4 Implementation of test cases

Inside the Linux VM the following command line tools are used. For further informa-
tion on them the reader is advised to consult the corresponding manual pages.

dd This tool is used for low-level copy operations on files. If the option if=FILE is
provided, dd uses this file to read from. If of=FILE is present as an option,
the output of the command is stored there. Otherwise, standard input and
output are used. The options bs=BYTES and count=SECTORS specify how big
the sectors to be read at a time are and how many of them are to be processed.
skip=SECTORS and seek=SECTORS can be used to determine the offset into the
files, where the former relates to the input file while the latter describes the
output. [RMK11]

dc3dd dc3dd is a patched version of dd containing various enhancements. The
most important ones are the support of using a repeated pattern as input via
pattern=HEX respectively textpattern=TEXT, and a live command line output
informing about the progress [Kor11].

xxd xxd provides a simple, non-interactive hexdump of its input. For our purposes
it is most helpful to use it for displaying the output of a dd command to view
small pieces of a file [Wei98].

mount mount is used to mount a file system specified by the first parameter to a
folder inside operating system, specified by the second parameter. We take
advantage of the fact that mount automatically creates a loopback device and
mounts it when given a file instead of a block device. Via -o, one can specify
options to modify the mount process. ro,noload is used to mount the file
system read only and with the debug option useful information is written to
the system log.

mkfs.* mkfs.* are multiple tools to create file systems. In our case * is either vfat,
ntfs, hfsplus or ext4 [Hud12] [ARSS12] [App] [Ts’12].

fdisk fdisk is used to create MBR partition tables. When used with only a device as
input parameter, fdisk asks interactively for the configuration options. If -o is
provided as option, a list of the current partition table on the device is printed
to the standard output [fdi].

gdisk gdisk is the version of fdisk for GPT partition tables. It is also mainly used
in an interactive version, but the variation sgdisk exists, which has various
command-line options and can be used for automating tasks. In this thesis, we
mainly use gdisk [Smi12].

Another tool, radamsa 0.3, is also used on the Linux command line, but instead of
the other tools that are more or less typical for Linux systems, it is somewhat special.
radamsa is a general purpose fuzzer developed at Oulu University. More precisely,
it is a collection of different mutators that are applied on an input file. Appendix E
shows the output of radamsa -l, which lists all available mutators. If none is given,
radamsa chooses one of them on its own. The same holds for the mutation patterns,

4.2 Test Set 1: File System 25

which mutate once or many times. The latter can either happen scattered over the
input or in a very close range. The developer of radamsa states that it is best to
let the program choose all mutator options automatically, with the options shown in
Listing 4.1. In that example, radamsa creates 100 different output files, each time
choosing a random file from the sample directory as a starting point and numbers
the output from 1 to 100 (through the use of %n). For logging purposes, we also
specify the -M path/to/meta.log option to obtain detailed information about what
happens during a program run. The choice for a fuzzing tool fell on radamsa because
it is usable with any file type and provides good success rates at the same time. In
the last two years, at least 26 vulnerabilities in major software projects were found
by using radamsa [Hel13].

1 # radamsa -o output-%n.foo -n 100 samples/*.foo

Listing 4.1: The recommended use of radamsa, as stated in the FAQ on the project
homepage.

4.2 Test Set 1: File System

This section groups all test cases related to low-level manipulations of a disk im-
age. As file systems and partition tables are complex data structures, it is hard
for forensic software to interpret them correctly. The provided test cases are aimed
at checking wether the support is forensically sound or just a quick implementa-
tion with incorectnesses in the details. If not otherwise stated the work on all disk
images starts with the creation of a zero-filled file of 100MiB size by using dd as
shown in Listing 4.2. The file may seem quite large but it is reasonable to do so
because the file system algorithms are optimised to work on typical storage devices,
which today have at least 265MiB in case of a (very) small USB stick. As the file
mostly contains zero bytes it can very efficiently be compressed after the work is
done.

1 # dd if=/dev/zero of=imagefile.dd bs=1M count=100
2 100+0 records in
3 100+0 records out
4 104857600 bytes (105 MB) copied, 5.70686 s, 18.4 MB/s

Listing 4.2: The creation process of a blank disk image file.

After creation, the file is then manipulated somehow to either introduce a benign
partition table or simply a single file system. Instead of viewing it in a hexeditor,
a combination of Linux commands can be used to have a quick look at single inter-
esting sectors inside the file, as shown in Listing 4.3. It is important to also fill the
file systems with sample data that should be found by a software program analysing
the image file. Otherwise, malfunction would be very difficult to detect. The sample
data has to be reasonably benign, such that a cross-triggering of vulnerabilities in

26 4 Implementation of test cases

the forensic software is made very unlikely. For that reason we decide against on-
line reference sets of data and create our own sample files that only contain plain
text.

1 # dd if=image.dd bs=512 skip=4711 count=1 | xxd
2 1+0 records in
3 1+0 records out
4 512 bytes (512 B) copied, 0.000558177 s, 917 kB/s
5 0000000: eb58 906d 6b64 6f73 6673 0000 0201 2000 .X.mkdosfs.... .
6 0000010: 0200 0000 00f8 0000 2000 4000 0000 0000@.....
7 0000020: 0020 0300 2806 0000 0000 0000 0200 0000 . ..(...........
8 0000030: 0100 0600 0000 0000 0000 0000 0000 0000
9 0000040: 0000 29c7 e603 bb20 2020 2020 2020 2020 ..)....

10 0000050: 2020 4641 5433 3220 2020 0e1f be77 7cac FAT32 ...w|.
11 [...]

Listing 4.3: In this example, xxd is used to visualise sectors inside a disk image, read
out by dd.

4.2.1 Directory Loops

The concept of choice to manipulate the various file system types are directory loops.
This is a manipulation technique that has already been described by Newsham et al.
[NPSB07], as well as by Wundram et al. [WFM13]. The latter work was conducted in
early 2013 and shows that the issue is up-to-date. Figure 4.1 depicts the most simple

Figure 4.1: A schematic view of a directory loop.

example of a directory loop that can be created. The on-disk structure of the file is
manipulated in such a way that the data structures belonging to the bottom directory
point back to its parent, the top directory. As all modern file systems disallow the
creation of such directory hardlinks, we use a hexeditor to directly modify the data
by hand. A detailed description of the task, different for all file system types, is
given in the following.

4.2 Test Set 1: File System 27

FAT32

FAT is the oldest of the file systems covered, originally designed for Microsoft DOS.
It is extensively covered in “File System Forensic Analysis” by Brian Carrier [Car05],
where all basic information in this section is taken from.

The on-disk layout of FAT consists of three parts, a reserved, a FAT and a data area.
Figure 4.2 shows a simplified version of this layout, omitting unnecessary details.

Figure 4.2: A simplified overview of the FAT file system.

Inside the reserved area the boot sector is found that describes the location of the
root directory, typically at the beginning of the data area. The data area is separated
into clusters and every cluster has an entry in the FAT, which is an abbreviation of file
allocation table. The size of the FAT entries depends on the version of the file system
used. In this thesis we use FAT32, resulting in an entry size of 32 bit. Directories and
files are represented using so-called directory entries, which basically group metadata
such as timestamps, attributes and names together with a cluster number pointing
to the content of this entry. In Figure 4.2 we can see the root directory that points to
the dir directory entry, that in turn points to the directory entry for a file hello.txt.
This entry now points to a darker coloured cluster somewhere inside the data area.
At this point the FAT becomes relevant. The number in a directory entry only shows
the starting cluster. Bigger files possibly consist of more than one cluster, in which
case the FAT entry belonging to the starting cluster points to the next cluster in the
chain, whose FAT entry again points to the next cluster and so on. The final cluster
however is marked by writing a value greater than 0x0fff fff8 in the corresponding
FAT enry.

After having figured out the internals, a directory loop can easily be created. At first,
the empty image file FAT.dd prepared as in Listing 4.2 is populated with a FAT32
file system via mkfs.vfat -F 32 FAT.dd. It is then mounted and the directories
/top/bottom are created, together with two evidence text files. The first one is called
/top/cotton.txt. It contains the string “evidence_top” and its name is chosen because
it is alphabetically sorted behind bottom, which will contain our directory loop.
Forensic software not correctly handling the loop could miss this file. The second file
is named /top/bottom/evidence.txt and has “evidence_bottom” as content. It tests

28 4 Implementation of test cases

if a forensic software tool detects the cluster containing it. As we now rearrange the
pointer structure one must follow from the root directory to reach the file, it can not
be read out directly and is technically deleted. It may be that only clusters marked
as unallocated are searched for deleted data by forensic software, which would in
that case not detect our evidence.

Reading out the first sector with the command from Listing 4.3 we obtain a sector
size of 512B and a cluster size of 1 sector. The start of the FAT and the beginning
of the data area, which is in sector 3184, can as well be found. With the same
command, sector 3184 containing the root directory can now be read and the cluster
address of the top directory is found to be 0x0003. This corresponds to sector
3185 (a cluster number of 1 does not exist, 2 is the root directory in sector 3184),
where we find another directory entry for the bottom directory, pointing at cluster
0x0004. To change this value, we compute its byte offset as 3185 · 512 + 122 =
1630778, the latter value being the offset of the cluster number in a directory entry.
Finally, we can open the FAT.dd file in a hexeditor, navigate to the byte offset
and change its value to 0x0003, the cluster address of the top directory. When the
image file is now mounted, one can navigate indefinitely into the directory structure
mountpoint/top/bottom/bottom/bottom/... The directory loop has succesfully been
created.

As FAT offers an extremly easy possibility for a second test case, we also describe it
very briefly. In another FAT32 file system, we only create a small text file, containing
the text “This is not very big”. Instead of letting the corresponding FAT entry point
to an end-of-file value, we change this value and point it to itself, thereby creating
a never ending FAT loop. To further support the impression of having a very large
file we also change the metadata part describing the file size to the maximum value,
which is 4GiB.

NTFS

The New Technology File System (NTFS) file system is, compared to FAT, much
more complex. Again, Brian Carrier [Car05] provides great information about the
on-disk structure, based on research of the Linux NTFS Project. However, one should
note that not all details must necessarily be correct, as the specification of NTFS
is not public and so, all research is based on reverse engineering techniques. Never-
theless, the free reimplementations available are today considered robust enough for
productive use.

Fortunately, to implement a directory loop only a basic understanding of the struc-
ture is needed. Figure 4.3 shows a simplified version of the on-disk layout. In contrast
to FAT, NTFS only contains a huge data area, separated into clusters. Every data in
NTFS is a file and as such described by a file record. All these records are grouped
together in the so called MFT –the Master File Table. The MFT also is a file and

4.2 Test Set 1: File System 29

Figure 4.3: A schematic overview of the NTFS file format.

therefore contains an entry for itself. As all meta files needed by NTFS, its filename
starts with a $-sign. To have a starting point into the structure, NTFS contains
a file called $BOOT. It is always located in the first sector of the file system and
contains valuable meta information, such as “Bytes per Sector”, “Sectors per Clus-
ter” and “Starting Cluster of MFT”. After having located the MFT, the file records
can be read out. These are structures consisting of an entry header, and multiple
attributes. Every attribute itself has an attribute header, specifying that it is either
resident or non-resident. A resident attribute is very small and therefore resides
directly inside of the file record. Non-resident attributes instead are the larger ones.
Their attribute headers contain pointers to the clusters containing the attribute con-
tent. Typically, this holds at least for the $DATA attribute, containing the actual
file content.

To make things more complicated, a file record containing the information for a direc-
tory often has the two attributes $INDEX_ROOT and $INDEX_ALLOCATION.
These contain a lookup tree for files and sub directories to improve access time, which
was one of the biggest drawbacks of FAT. Interested readers are pointed to Carriers
book [Car05], where all these structures can be studied in detail. Their coverage is
out of scope of this thesis.

To practically implement a directory loop, we prepare the image file as described in
Section 4.2.1, with the difference of the file system being NTFS. We then make use
of the command ls as shown in Listing 4.4 to find out the relevant “inode numbers”,
which happens to be its MFT entry number on NTFS file systems.

30 4 Implementation of test cases

1 # ls -lai /mnt/NTFS/top/
2 total 5
3 64 drwxrwxrwx 1 root root 248 Dec 9 14:22 .
4 5 drwxrwxrwx 1 root root 4096 Dec 9 14:22 ..
5 65 drwxrwxrwx 1 root root 160 Dec 9 14:22 bottom
6 66 -rwxrwxrwx 1 root root 13 Dec 9 14:22 cotton.txt

Listing 4.4: Usage of ls with the option -i to find out the inode number.

With knowledge of these numbers we can read out the file record 64, belonging to
the top directory. This file record contains the aforementioned lookup tree structure
and as expected, one of the entries therein points to file record 65, belonging to
the bottom directory. With use of a calculator to compute the byte offset and a
hexeditor for editing, we can now change this value to point back to its own MFT
entry, thereby creating an indefinite loop.

In this section, only the most basic parts of NTFS were dealt with. With more re-
search and time it is very likely to find other exotic features that can be manipulated,
for example looping directly into a lookup tree. Also, MFT entries are to date always
found to be 1KiB in size. However, there is no restriction for them to be so and the
size is directly stated inside the first sector of the file system. By patching a version
of mkfs.ntfs to use a different size, one could trick poorly implemented versions of
NTFS into not finding all entries or even crashing due to unexpected data in read
operations.

HFS+

The complexity of HFS+ is comparable to the one of NTFS. HFS+ is used by all
recent Apple computers. As Mac OS X is partially built on open source software,
Apple has released some of the source code, including the HFS part [App13]. At the
same time, a technical note explaining the format and giving advices about imple-
menting it has been published [App10a], which is the main source for the following
recapitulation of the internals.

After 1024 unused byte, an HFS+ partition starts with the volume header contain-
ing meta information on the file system, just as in the case of FAT and NTFS.
In HFS+ the most interesting informations are the blocksize, which in our exam-
ple setup is 4KiB, and information on the size and the location of five special
files. These are called the catalog, the extents overflow, the allocation, the at-
tributes and the startup file and they provide most information needed to run man-
age the file system. For our purposes, the catalog file storing information about
the directory tree is the most interesting one. From the volume header we find
that it starts in block 202 of the filesystem and we compute its byte offset as
4096 · 202 = 827392.

4.2 Test Set 1: File System 31

The inner structure of the catalog file again is a balanced tree format, slightly com-
parable to the lookup trees found in NTFS folder attributes. However, the catalog
file contains a single tree for the whole folder structure and can therefore become
much bigger. In our known test case example with two folders and two files, it is
still quite small, which dramatically increases its readability. The first block of the
catalog file contains the so-called header node, which is the root of every balanced
tree found in HFS+ (there are a few of them in different places of the file system).
This node contains solely meta information, stating that a single leaf node containing
data follows. Inside this node, occupying the second block of the catalog file, there
is nevertheless a whole tree-like structure on its own. A schematic overview of it is
given in Figure 4.4. As one can see, most of the information seems very similar and

Figure 4.4: A graphical view of the HFS catalog file.

just a few additions are made. Every of the entries is called a record of different form.
They are identified by an ID value and instead of pointin downwards as one would
maybe expect, the lower nodes contain the idea of their parents, thereby pointing
upwards to the root. The highest level node, the root directory, has a dummy ID
of 1 in its parent field. The thread records contain only the name of the node they
belong to, its ID, and t he ID of the parent of this node. They are used by the file

32 4 Implementation of test cases

system to efficently traverse the tree structure.

To create a directory loop, we locate the record entry of the bottom folder as well
as the one of its corresponding thread record and compute their byte offset from
the start of the file system. In our example, the values are 0xcb1e4 for the bottom
folder record and 0xcb364 for the thread record. Finally, we change the ID value of
the bottom folder from 18 to 17 in both records. At that point we encounter the
first irregularity in different file system driver implementations. When the image file
is mounted in Linux to test the directory loop, ls only returns an “input/output-
error” and “hfs: walked past end of dir” is written into the system log. However,
no further information on the error can be found inside the short time frame of the
thesis, not least because when mounted inside the Mac operating system of our host
computer, the image file behaves as expected and presents a directory loop both
on the command line and in the graphical file explorer. Interestingly even those
implementations seem to work different as the command line shows the loop we
already know from FAT and NTFS, where the contents of bottom are shown again
when accessing the bottom folder. The graphical file explorer however shows the top
folder again, right after clicking on it.

In this case, we have not only created a directory loop but we have also hidden the files
bottom.txt and evidence.txt from an investigator that either uses a Linux operating
system or a Mac operating system without the command line.

Ext4

The last file system to look into is ext4. It is the most recent one of the extended file
systems created for Linux operating systems and is closely related to its predecessors
ext2 and ext3. The best and most complete information on the file system is found
in the Linux kernel wiki, in an article written mostly by Darrick J. Wong under his
username djwong [Won13].

When trying the usual approach as already described multiple times, one finds out
that the display of the crafted directory loop simply fails in Linux and the following
error message is written to the system log:

ext4_lookup:1376: inode #12: comm ls: ’bottom’ linked to parent dir

After some research one finds a small patch commited to the repository of ext4
that prevents a direct link of a subdirectory to its parent [Dil12]. To circum-
vent this patch and nevertheless create a loop we change our test setup slightly.
After having created an empty file system with mkfs.ext4 we create two directo-
ries top_1 and top_2 on the root level, in each case filled with a subdirectory

4.2 Test Set 1: File System 33

bottom_ with the respective number attached. We also create the text files cot-
ton_1.txt, cotton_2.txt, evidence_1.txt and evidence_2.txt in similar locations as
above.

In the ext4 case we want to take another approach on analysing the file system. We
therefore use the command line tool debugfs, a debugging utility written from the
developers working on the extended file system. To begin with, the inode numbers
of all relevant directories are gathered with a recursive ls command as shown in
Listing 4.5.

1 # ls -liaR /mnt/EXT4
2

3 [...]
4

5 /mnt/EXT4/top_1:
6 total 4
7 12 drwxr-xr-x 3 root root 1024 Dec 10 00:23 .
8 2 drwxr-xr-x 5 root root 1024 Dec 10 00:23 ..
9 13 drwxr-xr-x 2 root root 1024 Dec 10 00:24 bottom_1

10 15 -rw-r--r-- 1 root root 15 Dec 10 00:23 cotton_1.txt
11

12 [...]
13

14 /mnt/EXT4/top_2:
15 total 4
16 1977 drwxr-xr-x 3 root root 1024 Dec 10 00:24 .
17 2 drwxr-xr-x 5 root root 1024 Dec 10 00:23 ..
18 14 drwxr-xr-x 2 root root 1024 Dec 10 00:24 bottom_2
19

20 [...]

Listing 4.5: Usage of ls to recursively find inode numbers.

As we can see from the output, top_1 has an inode number of 12, bottom_1 is inode
number 13, top_2 is assigned to inode 1977 and bottom_2 resides in inode 14. The
debugfs command can be used with the options # debugfs -R "stat <inodeNum>" EXT4.dd
to show information about every inode. We are most interested in the EXTENTS
entry at the end of the output. Extents are the blocks in which the information about
an inode are stored. The system is comparable to a mix of NTFS and FAT, where
the inodes are equal to the entries inside an MFT, but they do not have resident
attributes. Instead, every such entry points to an extent comparable to the clusters
containing directory information in FAT. We find that the extents for top_1 and
top_2 are 3510 and 3512. With the blocksize from the so-called superblock at the
beginning of the file system (1KiB) we can compute the byte offset of the extents
block and look at them. Listing4.6 shows the output for the extent belonging to the
top_1 directory.

1 # dd if=EXT4.dd bs=1024 count=1 skip=3510 | xxd
2 0000000: 0c00 0000 0c00 0102 2e00 0000 0200 0000
3 0000010: 0c00 0202 2e2e 0000 0d00 0000 1000 0802
4 0000020: 626f 7474 6f6d 5f31 0f00 0000 d803 0c01 bottom_1........

Listing 4.6: The shortened hexdump of an extent block.

34 4 Implementation of test cases

We find three entries pointing to directories. The first one belongs to inode 12,
which is stated at offset 0x00. It has a length of 12 byte (0x04), with a filename
of 1 byte (0x06). The filename follows at offset 0x08 and translates to “.”, which is
the current directory on a Linux system. The next entry is again 12 bytes in size
(0x10) and belongs to inode 02 (0x0c), referencing it as “..”, which is the parent
directory. The most interesting entry starts at offset 0x18, because this is the entry
pointing to the directory bottom_1. At 0x18, we see a value of 0x0d, which is
the corresponding inode number. Finally, we can create a directory cross-loop by
changing this value to 0xb907, the inode number 1977 in little-endian, and doing
similar for the extent of top_2, chaging the value to 0x0c which in turn points back
to top_1.

We conclude this section with the result that although efforts have been made to
patch ext4, thereby making it more resistant to corruptions, it is still extremely easy
to trick the file system into a directory loop.

4.2.2 Partition Tables

The containers around file systems on a typical computer drive are called partition ta-
bles. They enable a storage device to have multiple partitions, each of them possibly
containing different file systems. Additionally, they contain extra information that
helps the computer find the correct operating system on disk [Car05].

In the following, the older MBR is presented, followed by a newer technology, called
GPT, which are both very relevant for forensic investigators. The latter has been
standardised in the UEFI specification [Uni13], a modern firmware type used to
manage the booting process of a computer. As more and more computers ship
equipped with EFI firmware, GPT partitions will become even more widespread in
the future. MBR instead is a historical product introduced in early DOS computers
that until recently had a wide dispersion [Sen95].

Master Boot Record

In Chapter 5 of his book Brian Carrier [Car05] describes the MBR as DOS style
partitions. We use the technical implementation details explained there and in the
technical note describing PC DOS v7 [Sen95] to create loops and other inconsisten-
cies inside the partition table.

Figure 4.5 shows an example hard disk, equipped with an MBR partition table at the
start. The MBR always resides in the first sector of a storage device, using 512B of
disk space. Its largest part contains so-called boot code information used by comput-
ers to locate the operating system. We let this part of the MBR untouched and solely
concentrate on the following partition entries. Every MBR can contain a maximum
of four of those entries, thereby heavily limiting the possibilities of partitioning a

4.2 Test Set 1: File System 35

Figure 4.5: A schematic view of an example disk with an MBR partition table.

storage device. To circumvent these limitations, two types of partitions exist, which
are both depicted in the figure. The first type is called a primary partition, shown
by entry 1. Apart from that, one can also create an extended partition, as we see in
entry 2. Both types of partitions are specified by a starting sector and a sector size,
stored inside the MBR partition table. The difference is that extended partitions
can internally consist of multiple logical partitions. These are described by extended
boot records (EBR), structures that are comparable to the MBR but without boot
code at the beginning and with only two partition entries that can be used. The first
partition entry points to the logical partition it belongs to, the second entry can be
used to list the next EBR. Via this technique, one can theoretically have unlimited
partitions. A few limitations are given in the specification of MBR. The first is that
from the maximum number of four partition entries in the primary table, only one
may be an extended partition. Second, although the EBR have the same structure
as the MBR they may only use two of the partition tables, where the first one must
always be a logical partition and the second one, if it exists, must be a reference to
the next record.

To create malicious MBR partition tables we violate these specifications in the fol-
lowing ways. At first we create the loop that has already been described by Wun-
dram et al. [WFM13]. We therefore create a partition table with a primary partition
filling half of our 100MiB sample disk image file and an extended partition filling the
other half with the command line tool fdisk. We format the primary partition as FAT
similar to as we did in Section 4.2.1, but let the formatting tool decide on the size
of the FAT entries on its own. We then fill the partition with a textfile evidence.txt

36 4 Implementation of test cases

containing the string “evidence”. In a hexeditor, we then modify the partition entry
of the extended partition to have a starting sector of 0, thereby effectively pointing
back to the MBR itself. A program that parses the partition table will find the
partition entry for the extended partition, jump to sector 0 and search for an EBR.
Due to the similarity to the MBR, a program not checking for loops in the partition
table can thus be tricked in reading the MBR as EBR, continuously jumping back
to sector 0 when parsing it.

In a variation of this attack we create four logical partitions inside of the extended
partition. We format all of them with a FAT file system and fill them with different
evidence text files. Instead of changing the offset of the initial extended partition
entry we add an additional entry in the last real EBR belonging to the fourth logical
partition. This entry points back to the third EBR, which effectively creates a loop
around the last two logical partitions.

The third test case is more an extreme example of a valid MBR than a real corruption.
It exists of a single extended partition containing 199 logical partitions in it, each
one filled with a unique text file. To create the high amount of partitions the bash
script shown in Listing 4.7 is used.

1 parted FS_PC_MBR_3.dd --script mklabel msdos
2 parted FS_PC_MBR_3.dd --script -- mkpart extended 0 -1
3 for i in {1..199}
4 do
5 parted FS_PC_MBR_3.dd --script mkpart logical $(($i * 25)) $(($(($i + 1)) * 25))
6 done
7 parted FS_PC_MBR_3.dd --script print > layout.txt

Listing 4.7: The automated creation process for disk partitions.

After creation, the Python script shown in Listing4.8 is used to format each partition,
mount it and create a unique text file.

1 #!/usr/bin/env python
2 import os
3

4 with open("partitions_prepared.txt", ’r’) as f:
5 i = 0
6 for line in f.readlines():
7 i += 1
8 offset = int(line.split()[1])*512
9 sizelimit = int(line.split()[3])*512

10 print "Setting up partition %s with offset=%s and sizelimit=%s" % (i, offset,
sizelimit)

11 os.system("losetup /dev/loop0 many_partitions.dd -o %s --sizelimit %s" % (offset,
sizelimit))

12 os.system("mkfs.vfat /dev/loop0")
13 os.system("mount /dev/loop0 /mnt/FAT")
14 os.system("sleep 0.5")
15 os.system(’echo "evidence_%s" > /mnt/FAT/evidence_%s.txt’ % (i, i))
16 os.system("umount /mnt/FAT")
17 os.system("sleep 0.5")
18 os.system("losetup -d /dev/loop0")

Listing 4.8: The Python script for automated formatting and creation of evidence.

4.2 Test Set 1: File System 37

Finally, the fourth and fifth test case directly target the somewhat artificial rules of
having no more than one extended partition in the MBR, as well as only a single
pointer to a follow-up entry in every EBR. We handcraft two partition layouts shown
in Figure 4.6 that violate these limitations. Carrier [Car10] already did some basic
research on this as well and found that an additional partition entry in an EBR is
mounted in both Linux and Windows, making it very easy to use even for technically
unversed persons. In MBR partition tables, offsets are always given both in Logical

Figure 4.6: The handcrafted partition layouts of two test cases.

Block Address (LBA), that is, sectors relative to either the volume start or the start
of the EBR, and in CHS values. The latter refers to cylinder, heads and sector counts
and specifies a certain point on the physical hard disk using the disk geometry (heads
for example refers to the different read/write heads present on a disk). Although
modern computers prefer the use of LBA [fdi], we aim to make the artificial partition
layouts as authentic as possible. As LBA are easy to compute but the CHS values are
more difficult to generate correctly by hand, we create multiple intermediate partition
layouts and use a hexeditor and dd to merge them.

If one wants to intensify research in the field of partition tables, it will be beneficial
to patch fdisk in a way that it ignores the restrictions and directly creates the desired
partition layouts, a task that is not difficult but considered too time-consuming for
this thesis.

GPT

In modern computers, GPT is the partition table layout of choice. It has been de-
signed many years after MBR and therefore has certain advantages, the most impor-

38 4 Implementation of test cases

tant ones being the use of 64 bit LBA to support bigger hard disks and a more flexi-
ble size of the partition table, which eliminates the need for extended partitions and
increases the simplicity. GPT is specified entirely in the UEFI specification, where all
information used in the following section is taken from [Uni13].

In its first sector, volumes partitioned with GPT are identical to MBR partitioned
volumes. This sector contains the so-called “protective MBR”, which must be present
to prevent programs that do not understand GPT from accidentally overwriting data.
The protective MBR contains only a single partition entry of type 0xEE that indi-
cates the whole GPT part of the disk, including both partition table information and
partitions. The GPT header is located in the second sector of the disk. It specifies
metadata about size and positioning of various elements and includes a checksum
of itself, as well as of the partition table, to increase robustness against unintended
data corruption. The following sectors are filled with the partition entries. Each one
of them is typically 128B in size, but the value is variable and must be indicated in
the header. Additionally, the first LBA usable for partition data is stored there and
usually has a value of 34, leading to a total of 128 possible partition table entries.
Again, to increase robustness of the partition scheme, header and partition table are
backed up in the last sectors of the volume in reverse order, that is, with the back-up
GPT header being in the very last LBA.

Due to its flat and simple design, loops as created in the previous section are not
feasible in GPT partition tables. However, there are certain specification details a
forensic software should verify when analysing GPT disks. In our first test case we
make use of the redundancy feature of GPT and create a volume with two partitions,
each spanning 50MiB. We then create a second volume with another partitioning and
copy the last sectors containing the legacy information of the second volume over the
legacy information of the first one. This leads to an image file with a contrasting pri-
mary and secondary header that specify different partition labels and locations inside
the volume. A forensic tool should not only analyse the first header, but realise that
the information contradicts and warn the investigator.

The second test case is comparable to the many partitions created in the third MBR
example. Again, 199 partitions are created on a volume with a modified version of
the shell script from Listing 4.7 that uses gdisk, a GPT version of fdisk, instead of
parted. To format and fill all partitions with data, a python script comparable to
Listing 4.8 is used.

At third, we modify the protective MBR preceding the GPT header. Therefore, an
intermediate image file with an MBR partition table containing a partition half the
size of the GPT data is created and its first sector copied over the protective MBR
of the GPT image file. This leads on the one hand to a false specified size value and
on the other hand to a false partition type. Tools that do not properly check for
precedence of GPT could interpret such image files as being purely MBR partitioned,
thereby missing information.

4.3 Test Set 2: OS Specific Files 39

Test cases four and five are very similar and deal with the checksums contained in
the GPT header. In one case, the header checksum is modified only in the primary
header while the legacy header still contains the original value. Such behaviour
could indicate an accidental corruption and should be detected by software. In the
other case, both the primary and secondary value of the partition table checksum
are modified. It is very unlikely that the values are modified identically if an er-
ror occurs. More probably, wrong checksums at both places indicate a targeted
corruption, which is why it is even more important to inform the forensic investiga-
tor.

4.3 Test Set 2: OS Specific Files

After the forensic software has succesfully mounted a disk image it is often confronted
not only with many loose files, but with a folder structure that was created and
managed by an Operating System (OS). Files that are directly manipulated by the
user of a computer are only a subset of this structure. In this section, we have a look
at those files that are instead managed by the OS itself. These files belong to the
second highlighted leaf shown in Figure 3.4 and a first introduction into them is given
in Section 3.3. As the files that one encounters vary greatly between different OS,
we divide our test cases into the Subsections Windows (4.3.1), Mac OS X (4.3.2)
and Linux (4.3.3). Often, OS managed files have a file structure that is hard to
read for humans and forensic software is used to automatically analyse them and
create better readable output, for example CSV exports that can be imported into
spreadsheet programs or HTML reports that are rendered and viewed inside a web
browser. The work of Wundram et al. [WFM13] has already shown that the reporting
engines are not always secured against injection attacks. In the following, we pick
up this idea and extend it to other file formats. Additionally, we attack the analyis
process itself and manipulate files such that they might possibly crash a software
tool that tries to parse them.

4.3.1 Windows

As Windows is commercial software, a lot of its components use proprietary file
formats that are not, or only partially, documented [Rus99]. The documentation is
given in a way that developers of software are able to use certain features of the OS.
Therefore, a detailed insight into the file structure is often not considered necessary.
To tackle the needs of a better understanding for forensic analyses, people have
started to dissect many formats, sometimes publishing the results as open source.
The work of Joachim Metz is especially outstanding in this field, as he not only
concentrates on a single application, but has done research on many of the file formats
used in Windows [Met13a].

40 4 Implementation of test cases

It is difficult to find information on how commercial forensic software implements the
analysis of supported file formats, but it is likely that the developers did their own re-
verse engineering work, possibly building upon publicly available information. How-
ever, reverse engineering is always subject to incertainties and it might be that details
are misinterpreted or simply overseen. This makes the resulting software products
potentially vulnerable to attacks, which is why these components must be tested even
more strictly. For Windows OS, we have a look at the file formats edb, NT Registry,
Jump List and evtx. From a forensic perspective, these are very interesting, because
they can contain many hidden evidence artifacts.

Windows Search

The Windows Desktop Search is one of multiple applications on a Windows com-
puter that, since Windows XP, makes use of the Extensible Storage Engine Database
(EDB) format. It uses the database to store information collected during indexing
operations. Metz points out, that not only the file name and location, but ex-
tensive metadata and sometimes even part of a files content are stored inside the
Windows.edb [Met10]. Apart from his forensic research on the particular case of
Windows Search, Metz has also collected a lot of information on the EDB file format
in general [Met12]. The test cases built in this section all concentrate on these gen-
eral features, so that they can also be applied to forensic software that only analyses
the EDB format without a deeper understanding of Windows Search characteristics.
At first, we give a short overview of the file format, based on Metz’ work [Met12],
before explaining three manipulations of it.

EDB files start with a header that contains meta information, for example the page
size. This value is used to split the remainder of the file into equally sized pages that
are containers for the actual database. Each page consists of a page header of either
40 or 80 bytes, followed by the page content. Pages are organised in a balanced tree
structure, comparable to those used in NTFS or HFS+. In EDB pages do not store
the childnodes directly. Instead, a metadata table called the space tree is used. A
page with childnodes has a pointer to an entry inside the space tree, where the actual
values for the children are stored.

The first test case targets the level of detail with which a forensic application parses
the database. In the database header, a field called last object identifier is specified,
which indicates the index of the last page in use. By changing this value to 0,
we create a simple modification that could trick badly programmed software into
thinking that the database is empty.

Another possibility is to manipulate the extensive use of pointer values for navigation
inside the tree structure. We analyse a Windows.edb with the command line tool
esentutil which is found by default on Windows computers. We find that page
16 has a child that is specified in the space tree entry located at page 5. This

4.3 Test Set 2: OS Specific Files 41

entry has a value of 15, which we change to 16, creating a loop inside the tree.
Additionally, the next Page field in the header of page 16 is also changed to point to
itself.

The previous test cases only cover a small part of the complex data structure of edb.
In order to enlarge the coverage while not spending too much time on this single file
format, the third test case is chosen to be a fuzzing of a Windows.edb file collected
from a sample Windows machine. The command shown in Listing 4.1 is used to
create many fuzzed versions of the file. Ideally, forensic investigators conducting this
test case will use many different versions of Windows.edb found during their everyday
work as input to radamsa. In that way it is ensured that the test is as realistic as
possible.

42 4 Implementation of test cases

Windows Registry

The Windows Registry is described short and clear by Mark Russinovich, an em-
ployee of Microsoft, in the first sentences of his magazine article “Inside the Reg-
istry” [Rus99].

The Registry is the centralized configuration database for Windows
NT and Windows 2000, as well as for applications. The Registry stores
information about tuning parameters, device configuration, and user pref-
erences.

The information Russinovich talks about includes installed software, connected USB
devices and much more data that is of high interest for a forensic investigator. There-
fore, parsing registry files is already a supported function in the major commercial
forensic programs Encase Forensics, FTK and X-Ways Forensics. Additionally, lots
of free software exists that is created especially for viewing registry files. As with
the EDB file format, the structure of registry files is not completely known and must
to some extent be reverse engineered. Harlan Carvey, creator of the important soft-
ware tool RegRipper, has created a detailed documentation covering the important
aspects [Car11]. It is important to note that the Windows registry is not just a
single file, but a collection of multiple files found in different places on the computer.
The correlation between registry paths and files is described by Sigel and Geschon-
neck [SG11]. For the test cases, we limit ourselves to the NTUSER.DAT file that
holds information that is specific to a single user of a computer. In forensic investi-
gations this file will often be the most important one.

A registry file, a so-called hive, contains header information, followed by equally sized
hive bins that each contain multiple cells. A cell is a single element inside the registry
that can be of different types. The relevant ones used during our manipulation
approaches are cells of type nk, called “named key”, and the types lf, lh, li and ri
that are grouped together as “sub keys list”. A typical NTUSER.DAT file that we
dissected during our research starts with an nk cell as its first element. This cell
points to a sub key list via an offset. The sub key cells in turn are associated to a
named key, that can again contain multiple subkeys and so on. In that way, a tree
structure is created that resembles the one that can be seen when the registry is
viewed in the regedit software found on Windows computers, as shown in Figure 4.7.
We find that named keys correspond to the folders seen in the screenshot which, at
their final level, contain vk (value key) cells that represent the actual information in
the registry.

In an attempt to force a denial of service the tree structure of a registry file is
manipulated to create a loop. Therefore, we locate the sub key list of the first
named key. We then search for the offset inside the first list element that points to
the associated child named key. This offset is modified to point back to its parent
named key.

4.3 Test Set 2: OS Specific Files 43

Figure 4.7: A part of the Windows Registry, visualised with the regedit software.

The second test case aims at crashing software by making it read more data than
actually present. Named keys contain a field that specifies the number of sub keys,
and a sub key list also contains a field indicating the number of elements. We modify
both values of the very first named key inside a NTUSER.DAT to hold a value of 37
instead of the original number 11. Badly programmed software will try to read 26
more sub keys than existing and might instead encounter data that causes a program
crash. If programmed correctly, the parser will check whether a read out sub key has
the expected format.

As Windows registry analyses often result in reports and as Wundram et al. have
already discovered flaws in exactly that feature it is important to also have a test case
dealing with injection attacks. We manipulate the sCountry value key to contain the
values :"’,;| and space, characters that are often used in CSV exports to delimit
fields from each other. We also inject an HTML comment into the Username value
key. Finally, the value keys sLongDate, sNativeDigits and sTimeFormat are changed
to contain a tabulator, a newline character and a nullbyte. The choice of the value
keys is arbitrary but limited to values that are of interest during an investigation.
When testing for vulnerabilities, one can use the search feature included in most
software to locate the interesting fields.

Fuzzing is again chosen as last test case in this subsection. The complex format is a
promising input to a fuzzer and the same command line options as before are used to

44 4 Implementation of test cases

generate the output files. In this case, all registry files found on a Windows system
are chosen as input.

Jump Lists

While search and registry are old features available for many years, Jump Lists are
a feature that were introduced with Windows 7. Although this Windows version
has been released four years ago [Sin09] the forensic work on Jump Lists is not
as complete as it is for the other file formats. The forensicswiki lists some basic
information on Jump Lists [Jum13a], but a detailed low level description is hard
to find. Therefore, we choose a more practical approach to work with this format.
On a sample Windows machine we prepare a file by visiting four websites with the
Internet Explorer and pinning each of them to the Jump List. Jump List files are
stored in a common location underneath the AppData folder inside a user profile.
After uninstalling an application it might be that the Jump List of it remains, which
is why these files can be of interest for an investigator. However, the file names
are cryptic alphanumeric combinations that can only be associated to an application
with hard work, for example by manipulating a Jump List and tracing the changing
files inside the Jump List directory. An extensive list has been collected on the
forensicswiki, built upon different sources [Jum13b]. With this list, we locate the
prepared file needed for our work. Even without knowledge of the internal format,
the websites are clearly visible as UTF-16 encoded strings when looking at the file
in a hexeditor. For injection purposes, we manipulate these strings in the following
way.

At first we inject javascript that will be triggered if a forensic software reports the
contained websites as clickable hyperlinks. We test event handler injection by chang-
ing one website entry to google.de/ onmouseover="alert(123456789)". Another
website entry is completely replaced by javascrip:alert(123456789) to test for a
lack of escaping the javascript pseudo protocol handler.

In a copy of the file we test for CSV delimiter vulnerabilities by injecting the char-
acters ,;|, along with tabulator, newline, space and nullbyte into the four website
entries. We omit the characters . and :, as these are regular parts of a URI and
should not cause any problems.

Finally, we decide to also fuzz this file format for a third test case, because the
structure is not yet completely researched and might be parsed incorrectly. For a
broader fuzzing input, we use all Jump List files that are present on our sample
Windows machine.

4.3 Test Set 2: OS Specific Files 45

Windows XML Event Logs

In Windows Vista the old evt event log file format has been replaced by the newer
evtx format. The additional x in the file extension stands for XML and indicates
that the new event log format is based on a binary XML structure. Again, it is
a working documentation of Metz that is very helpful for the understanding and
therefore used as a base for the following details [Met13b]. His findings partially
based on the eventlog parser work of Andreas Schuster [Sch07]. A relevant event
log file for an investigation is the System.evtx file that stores many kinds of system
related information messages. Normally, this file grows large and becomes confusing
for analysis purposes. To gain a better understanding of the file format and to
produce smaller test cases we delete the logfile on our sample Windows machine and
let the OS create a new one. We then use this freshly created file that only contains
about 90 entries for further work.

The inner structure of evtx is somewhat comparable to registry and edb files. The file
starts with a header and is then split into chunks. Each chunk has a size of 64KiB and
contains an array of event records, preceded by a chunk header.

The latter is subject to manipulation in our first test case. As evtx files normally
contain multiple chunks, each chunk header contains fields for the first and last
event record number it contains. In case of our freshly created file only a single
chunk is present and the first event record number is 1. By swapping the fields,
two things are achieved. The first number field being greater than the last number
field provokes badly programmed software to ignore the event records, for example
because it computes how many records have to be read by using these numbers.
On the other hand, keeping the original values and only swapping them tests the
ordering algorithm used for the records. If all records are parsed correctly it has to
be seen whether they are ordered in a temporal ascending order or the other way
round because the first event record number field specifies the last record to come
first.

The second test case is a variation of the injection test already known from the
other file formats. At the beginning of the file, " attr=’asd’ /> is injected into
the xmlns attribute. In many cases a succesful injection will only affect everything
that comes after it in the file and by injecting into the first attribute the damage is
as big as possible. Additionally we inject javascript in record 9 by manipulating the
event message to contain <script>alert(1)</script>\00\00. The injection ends
with two nullbytes that also test whether these can be used to terminate a message
before it really ends (there is more text after the nullbytes). To further test the
interpretation of special characters a newline and a tabulator character are injected
into the record numbers 10 and 11.

As with all Windows file formats so far, we choose to fuzz Windows event logs as a
third test case. As ususal we use the command line options from Listing 4.1 and take

46 4 Implementation of test cases

all event records found on our sample Windows machine as input files.

4.3.2 Mac OS X

In contrast to Windows, Mac OS X is based on the open source OS BSD [App04].
Therefore, the core structure of Mac OS X is well documented and mostly con-
sists of plain text files for configuration and logging, which is a typical aspect of
UNIX -like operating systems. However, many proprietary additions have been built
upon the core system that, if not based on open source techniques, remain mostly
undocumented. In this respect Apple is even more secretive than Microsoft and
avoids every information that needs not to be given. Together with the not so
widespread use of Mac OS X as operating system - different sources report varying
market shares that all stay below ten percent (see, e.g., [Sta13]) - this makes OS
X a not so well researched OS with a relatively bad support in terms of forensic
software.

The following test cases pick out some of the better researched file types and give
an outlook to what one must think of when implementing support for more for-
mats.

Spotlight Database

The equivalent of Windows Search on Macintosh computers is called Spotlight. One
of the few resources on this feature has been published on the Digital Forensic Re-
search Workshop in 2008 [JPA08]. Unfortunately, the description remains only high-
level and not much information can be taken from it. The Spotlight index is stored
in a file store.db that is located in a folder underneath the root level of a mounted
volume. Each volume has its own database that contains both metadata and partial
file contents.

As no detailed file format description could be found we create only two test cases of
which one of them is a fuzzing approach identical to those already described multiple
times in Section 4.3.1.

The other test case is an implementation of both javascript and CSV delimiter in-
jection. During our research we found that the layout of the Spotlight database has
changed in Mac OS X 10.8, it is now located in a folder Store-V2. On a test system
with Mac OS X 10.6, the folder is called Store-V1. Due to a lack of availability, no
information could be retrieved for Mac OS X 10.7. To guarantee compatibility in
the future we create the injection test in the modern v2 format. An empty USB stick
is filled with sample data of the digital corpora project [GFRD09]. On the root level
of the USB stick, we rename a file to “<script>alert(1)</script>”. The / character
is replaced when listing the files in a terminal and to be sure that the injection is
created correctly we implement a second variant of it. One of the folders on the

4.3 Test Set 2: OS Specific Files 47

volume is renamed to “<script>alert(1)<”, a file inside this folder to “script>”. If
forensic software lists the complete paths stored inside a Spotlight index, the injec-
tion will be pieced together from its two parts. For the CSV delimiter part, three
folders called ,, ; and | are created on the drive. The USB stick is then attached to a
Macintosh computer that automatically starts indexing it and creates the malicious
store.db.

Binary Property Lists

Property Lists contain information comparable to the Windows registry, but instead
of collecting it in a database-like structure stored in only a few files, many single
files that each contain preferences of a single application or part of the OS exist. For
example, our sample Macintosh computer used almost daily for two years contained
338 files under the path Library/Preferences inside the main users folder and 86
objects in the same path on the root level of the hard drive, where preferences
common to all users of the system are stored.

Property lists are XML documents and can exist in a plain text, as well as a binary
variant. The latter is a more modern version which has the advantage of reducing
the overhead of plain text XML [App10b]. Macintosh computers contain a command
line tool called plutil to convert the two different formats into each other. The test
cases related to property lists target the XML parsing component and check whether
the document type definition (dtd) of property lists [App10b] is considered during
analysis of the file.

Therefore, we create a file that contains a <plist> xml element with a <true/> xml
element inside. The header information with the XML version and a link to the dtd
file are omitted. This file is considered the most minimal property list possible and
should be valid in regard to the dtd.

In a second test case, the dtd is violated in multiple ways. The file recentitems.plist
containing the recently used server addresses, documents and applications is used as
a base. A <string> element that contains a server address is changed to hold a text
that does not have the form of a URI. This does not violate the dtd as such, but can be
detected only if the expected content of the file is known and checked. Additionally,
other violations are created, for example an element <true>Not so true</true> is
injected into the XML structure, violating the fact that true is defined as a primitive
element without content. For a complete overview on the manipulations in this test
case, the user is referred to Appendix F.

The third test file consists of a handcrafted property list that is very deeply nested.
The file contains about 200 levels of nested <dict> xml elements with the ele-
ment <string>This is a dummy string</string> in the deepest level. Software
analysing this file must not crash due to the deep nesting or show the file incom-
pletely.

48 4 Implementation of test cases

Finally, a fuzzing test case is created for the binary versions of the files recen-
titems.plist and sidebar.plist that contains information on mounted volumes and
can therefore give information on what software has been installed on the computer.
This is because Macintosh software installers mostly come packaged as raw images
with the file extension dmg, which are mounted by the OS. We consider these two
property list as most valuable to an investigator and fuzz them to test the binary
parsing capabilities of software that are more complex to implement than simple text
parsing.

Log Files

A third important source of information on Macintosh computers are logfiles. Mac
OS X uses an approach that is close to the one of Linux and stores logging infor-
mation in plain text files. These naturally provide less possibilities to manipulate
the file structure and have a lower potential of revealing flaws in the analysing soft-
ware.

An interesting plain text test case is again an injection example. As < and >
are regularly used in log entries, we omit a javascript injection and only add the
characters ;,|!?*"’, tabulator, newline and nullbyte to line 100 of a system.log file
acquired from our sample Mac OS machine. Apart from the CSV delimiters it is
tested whether newline and tabulator are interpreted in a log entry. This is indeed
not a critical behaviour but by using them, an attacker could make the log very
hard to read, so that important information could be overseen. Additionally, the
use of a nullbyte could be interpreted as end of string and cause a loss of informa-
tion.

The two other test cases check for a deeper understanding of the logfile format.
Therefore multiple entries are reformatted such that the order of log message, is-
suing application and timestamp information is changed. Additionally the entries
are reordered to break the temporal ascending order. At last, the sample sys-
tem.log file is enriched with multiple lines that, when read one after another, form
the texts “This is another text to see what happens if random text is inserted
somewhere in the file.”, “Random text in between lines” and “Random text at the
end!”.

4.3.3 Linux

While Mac OS X only has an open source core that for example leads to the use
of plain text for the system.log file, the Linux OS is entirely open source and we
cannot think of as many useful test cases as for the other two operating systems.
The good readability of all configuration files and probably also the low market share
of Linux have kept the coverage in forensic tools so far very low. We nevertheless

4.3 Test Set 2: OS Specific Files 49

show two different approaches of manipulation. Although publicly available soft-
ware does not cover these file types they are easily analysable by small scripts that
a forensic investigator can write for herself to faciliate the everyday work. Such
tiny programs are especially endangered because no public review of them is con-
ducted.

Locate Database

An example of Linux file formats where automatic parsing would be very helpful is
the mlocate.db file used by the command line search software locate. In contrast to
Windows Search and Macintosh Spotlight, locate only indexes the file names without
looking into their content. Themlocate.db file format is explained in a Linux manpage
that is used as resource for this section [Trm]. The file contains plaintext and basically
lists all file and folder names found during its indexing attempt. The single entries are
separated by different delimiters that specify whether a file or folder entry is following.
Additionally, there is a third delimiter indicating the end of a directory. All test cases
are based on a mlocate.db acquired from the Kali Linux 1.0.5 virtual machine used
during this thesis. The folder structure mostly reflects a freshly installed OS with
only few additional files.

The first test case targets the header information, more precisely the timestamp con-
tained in it. The nanoseconds field is filled with the maximum value 0xFFFFFFFF,
which clearly is greater than the possible 1,000,000,000 states that this field could nor-
mally have. Software reading out this field should check the plausibility of the anal-
ysed information and must not crash due to a buffer overflow.

The second and third test case alter the delimiters between single entries. In one test
file, the byte 0x02 indicating the end of the root directory is changed to 0x00, which
means that a file entry is to follow. Badly programmed software could produce
wrong output because it tries to read on entries in the directory where there are
none.

The other test file contains delimiters that are not specified at all. 0x03, 0x04, 0x10
and 0xFF are injected at various places in the file. For the exact locations, see
Appendix F.

Shell History File

Depending on the shell used when operating on the Linux command line the typed
commands can be logged in a plain text format. The Kali Linux used by us is
configured with the standard shell bash that is found on most Linux operating sys-
tems. The commands are logged in the file .bash_history that is stored in the home
folder of a user. We create a single test case for this file containing various injec-
tions.

50 4 Implementation of test cases

Every printable character can possibly be injected in the file by simply typing it as
a command and should therefore not cause any problems during parsing. As investi-
gators might forget about these characters when quickly writing an analysing script
they are nevertheless tested. The string <script>alert(1)</script> is injected into
the third line of the file, one line later the characters +;:|,. are inserted. By manip-
ulating the file in a hexeditor, tabulators and various other non-printable characters
are added to the first two lines of the file. These are not found in regular .bash_history
files and are more likely to be escaped insufficiently.

4.4 Test Set 3: User Files

User Files are the complement to the OS managed files from Section 4.3. They con-
stitute the third highlighted leaf shown in Figure 3.4 and thus are the last group
of input data considered in this thesis. User files are a vast group of different
file formats that one typically deals with when using a computer. In this section
we have a look into multimedia files (4.4.1) and office file formats (4.4.2). Addi-
tionally we look at other file types that cannot be grouped elsewhere in Subsec-
tion 4.4.3.

4.4.1 Multimedia Files

Modern life can hardly be imagined without multimedia files. Many people have at
least one of digital camera, smartphone and MP3 player. The majority of music sold
today is bought online [Gus11] and stores like iTunes also increase the amount of
films distributed digitally. In context of home photography analog pictures became
almost extinct in favor of digital files that can easily be stored on a small device
instead of lots of photo albums. It is obvious that every forensic investigator will
sooner or later have to deal with multimedia files. In the following subsections,
we target the viewing capabilities of forensic software with different multimedia file
formats. While pictures are most of the time supported, it is hard to find support for
audio and video formats. At least a preview capability seems however a reasonable
feature for future implementations and therefore these formats are considered by
making quick fuzzing attempts.

Picture File Formats

Digital pictures can be stored in many different file formats. One of the most famous
ones has the extension jpeg/jpg, but png, gif and tiff are also found quite often.
The latter is a high quality format often used in printing environments and has
the ability to store multiple pictures in a single file. It is also the native format
in which Mac OS X stores screenshot data. The main use of gif is instead its

4.4 Test Set 3: User Files 51

support for animated pictures. Examples range from slowly changing single pictures
to files that show short video clips. The formats png and jpg are used for storing
normal pictures, that is, those that are taken with digital cameras or entirely created
digitally.

All analysed file formats store the resolution information in their file header. The
first test case therefore consists of three manipulated files where the picture height
has been reduced to half of the real value by changing the corresponding field in
the header with a hexeditor. In a forensic context, software must not only rely on
the header information but check for additional data inside the file that indicates that
part of the file will remain unshown if the specified size is used.

The second test case targets the preview capability of gif files. We use a sample
animated gif taken from the wikipedia [Mar] and change its metadata. In gif, every
single frame shown has its own metadata stating size, location and display time of
it. We use a hexeditor and enlarge the display time value of the first frame to a
high value. The exact amount should be ten seconds, but testing has shown that
the exact time varies in different viewer programs and goes up to twenty seconds.
Forensic software should not only preview this first frame but instead hint the user
at the animated content of the file.

The structure of png files is subject to a third test case. In short, png files consist of
multiple chunks that can have many different types. All files contain the chunk type
IHDR, where header information is stored, and one or more IDAT chunks that store
the picture content. If multiple of those are present they are interpreted sequentially
and put together when displayed. We use the chunk type tEXt that is not mandatory
but often used to store metainformation about the file. The tEXt chunk has a key
and a value, where the key describes the name of the meta tag. A file found by doing
a google search for the png file format [Anob] is used as base and a “comment” meta
tag is added with the command line program ExifTool [Har13] that is preinstalled
on Kali Linux and used for viewing and editing meta information of pictures. The
content of this comment is the javascript string <script>alert(1)</script>. A tag
additionalComment is manually inserted into the file with a hexeditor at its end. It
contains the value hidden text;,.:"’|, followed by a tabulator and a newline character
and has a handcrafted checksum value matching the chunk content. This second tag
both tests forensic software for injection and showing the presence of unexepected
tags that do not conform to the usual exif tag types.

Test cases 4 and 5 deal with tiff files. This format is quite complex and has, as
already stated, the possibility to contain multiple pictures in a single file. Each
picture is described by a so-called ifd entry comparable to the chunks in png. An
ifd entry contains the offset pointing to the next ifd inside the file. The fourth
test case is a tiff file that contains two pictures showing the texts “frong” and “bot-
tom”. It is not further modified but aims at testing software for its tiff viewer
quality.

52 4 Implementation of test cases

In the last test case, this file is further modified. The offset pointing to the ifd
entry with the bottom image is manipulated so that it points back to the front ifd.
Parsing software is thus tricked into an endless loop and can crash if programmed
incorrectly.

Audio and Video Files

Audiovisual media comes in many different complex formats, which cannot be anal-
ysed completely in the timeframe of a bachelor’s thesis. There exit however a mul-
titude of papers, for example the one of Thiel [Thi08], that show that fuzzing is
a common testing mechanism for media player software. We follow this approach
and create two fuzzing test cases with the radamsa software. We use different audio
files of the types mp3, ogg (audio) and wav collected from different sources on the
internet as a base in one test case, and video files in the formats mp4 and ogg (video)
in another one. By taking the files from the internet we assure a widespread use of
different encoding algorithms, softwares and meta tags used that would be hard to
reach when creating all files ourselves. It is advised to stick to a comparably large
variation when reproducing the test cases at a later time.

4.4.2 Office Files

A second group of important files are office related formats. Many people use an
office suite like Microsoft Office or one of the open source equivalents. In professional
environments these are used for writing letters, doing spreadsheet calculations and
many other tasks, and most private computer users also have such software installed.
Another file category we talk about in this section are emails in various formats.
The categorisation of these is a border case but we feel that they are better grouped
to office files than to the next section containing otherwise ungroupable file formats.
Additionally, emails are a very important evidence source in investigations conducted
by larger companies that for example want to know whether corporate secrets have
been sent out of the company by an employee.

Open Document File Format

The Open Document File Format is a file standard that was invented during the
development of the open source office suite Open Office. It is defined in an OASIS
standard [OAS11], where all information used in the following is taken from. We
limit our work with the file format to odt files that are used to store text documents.
All features from the more than 200 pages long standard can certainly not be covered,
instead a variation of four different test cases is presented. Open Document files are
a bundle of different XML files describing content and metadata. The files are stored
in a zip container that contains the mimetype as first uncompressed element so that

4.4 Test Set 3: User Files 53

the file format can be recognised. All other files can be stored in a compressed way
to save disk space. The blogger Tanguy Ortolo explains how to un- and repack such
container based files on his website [Ort11]. To manipulate odt files on a low level,
we make use of this in some of the test cases.

At first we make use of a feature called conditional text. Conditional text is text
that uses a trigger value to either be shown or hidden. This allows the creation of
interactive documents. We use the software Libre Office in version 4.1.3.2, a vari-
ant of Open Office and bind the text “The secret key to my hacker admin panel
is admin:admin” to a variable text value that must be set to “True” so that the
sentence is shown. In every other case, the text remains unseen in the viewed docu-
ment. By using this advanced feature it is tested whether the preview component of
forensic software implements the complete Open Document standard or only parts
of it.

The second test case also makes use of a feature provided by Libre Office, but ma-
nipulations are necessary to make it more malicious. The floating frame element can
be used in Libre Office to include other documents embedded in a small, scrollable
frame inside a document file. We manipulate the target of this frame in the XML
structure of the file content.xml and let it point to “.”, which is the document itself.
When viewing the document in Libre Office, a loop occurs and the file embeds itself
recursively. To multiply this effect we embed the same floating frame 17 times in the
document.

Images that are not embedded via a floating frame but directly into the file, are
included into the zip container in a subfolder called Pictures. The file manifest.xml
contains a list of all files included into the container and also lists every image
included in this subfolder. If a document is unpacked and repacked with an additional
picture added to the folder Libre Office only shows a warning message and refuses
to display the file. However, if it is added to the list in manifest.xml, the repacked
document now containing a hidden image is considered valid and shown without
problems. The third test document uses this fact and shows that forensic software
must not only preview the document content itself but also look for additionally
inserted files in the container.

The last odt test case is again created only by using Libre Office. If a picture is
included into a document via drag and drop it is not copied to the aforementioned
subfolder but only included through a hyperlink. The content of the picture is
loaded from the internet everytime the document is viewed. In general, forensic
investigations should take place in a secured laboratory environment without internet
access but if an investigator only wants to take a quick look at some files she might
forget to turn off her connection. In such cases the forensic software must prevent
the loading of the file and only show a placeholder or a warning message that the
document wants to load content from an external source. Otherwise it would remain
unclear when and how forensic software communicates with the internet, which is
not a flaw on its own but faciliates attacking attempts.

54 4 Implementation of test cases

Microsoft Office

Since Office 2007 Microsoft uses an XML-based file format that is very similar to
the Open Document Format. We decide to omit this file format as the test cases will
likely give comparable results to those from the previous section. Instead, we take
a look on the older, proprietary binary format that can be identified by the missing
letter x in the file extensions.

Due to newer formats being present, the research level on the older Windows format is
rather low. Microsoft has released detailed documentation on the file formats [Mic13],
but these documents have an enormous amount of pages, making them useless as
source for a quick dive into the format. We decide to instead use the binary nature
of the format as input to radamsa and create a test case that contains 40 fuzzed
versions of each doc, xls and ppt files. The original files have been taken from the
digital corpora project [GFRD09].

Email

Emails are an important communication method in both private and professional
environments. If software like Mozilla Thunderbird or Microsoft Outlook is used to
retrieve emails from the internet they are stored on the computer. Depending on the
software and the OS, different file formats are used and many store their data in plain
text. One exception is the pst format used by Microsoft Outlook. The file contains a
database where the complete mailbox of a single user is stored. It uses a proprietary
format which is one of the lesser researched Microsoft file types. The libpst project
has published a document describing its findings [Byi], but the information is not
complete and subject to active development. By using this documentation we learn
that pst files are build in a tree-like structure with nodes linking to other nodes.
Making things more complicated, there are two different tree strcutures in a pst file
called Index1 and Index2. These two indexes contain different information and links
exist in between both structures. In our first test case, we locate two nodes, each from
one of the indexes, that describe the same tree element. Both node types contain
a backpointer indicating the parent node and an offset, which is a binary address
to the structure holding information about possible child nodes. By changing the
backpointer to the ID of the nodes themselves and the offset to the binary offsets
of the nodes we create a loop in both trees that, when parsed, should lead to an
endlessly running or crashing program.

The three other formats we take a look at, eml, emlx and mbox are much more
simple. mbox files store complete mailboxes for an email account by simply chaining
the plain text emails, separated by an empty line. Our test mbox has a manipulated
layout with many newlines inserted at various positions in the file. It tests the
parsing capability of software which must recover all files to give forensically sound
results.

4.4 Test Set 3: User Files 55

The eml file format is used to store single email messages, for example when ex-
porting them out of Mozilla Thunderbird. The file is plaintext and contains only
the transmitted email message itself, without further information. From a technical
perspective it is interesting that the complete email header is stored in this file type.
It is interesting to filter emails by various header fields such as the receiver of the
message and therefore likely that software analyses and interprets these fields. In our
third test case we inject the string “<script>alert(1)</script>” into the To: header
line and an HTML comment, commenting out the first additional recipient into the
Cc: line.

The last two test cases deal with emlx, the file format for emails used byMail.app, the
standard email application found on Macintosh computers. emlx messages contain
plain text messages such as eml and additional metadata information in form of an
embedded property list (see Section 4.3.2 for more details). The start of the property
list is indicated by storing the size in bytes of the original message in the first line of
the file. Test case four is an email taken from our sample Macintosh machine, where
this bytesize has been changed to a bigger number. Badly programmed software
can therefore interpret the property list as part of the message and show wrong or
irritating results.

The last test case is an example of an XML bomb [Bil03]. It is based on the as-
sumption that parser software for emlx files does not implement a complete property
list parser but relies on the XML information found inside the file. The link to the
external document type definition is removed and the dtd is included internally into
the file. It is manipulated to contain many entity definitions that recursively include
themselves for twelve levels, resulting in 1012 “lol” that use 3 TB of memory space if
the software deflates them completely.

4.4.3 Various

The goal of this last subsection is to group file formats that do not fit in another
category. To avoid creating two sections with a single file format each, we describe
compression bombs and PDF files together in here. Both formats have a high rele-
vance and should therefore not be left unconsidered.

Compression Bombs

The concept of compression bombs is to build files that expand to a very large size,
comparably to the XML bomb explained above. Two of the test cases use the typical
compression format zip, but there is also a test case in the file type png that one
would not associate with compression at first sight. Compression bombs sometimes
use the fact that the analysing software unpacks even recursively compressed files
to look at the information found in the lowest level. The attack is known from anti

56 4 Implementation of test cases

virus software that was crashed in that way a few years ago and applies exactly
in the same way to forensic software that almost always has the option to extract
compressed files automatically.

The first compression bomb is a handcrafted zip file consisting of many layers. There-
fore a single file of 4GiB is created that contains the string “random” repeated many
times. It is compressed with the zip command line tool using the best compres-
sion algorithm. The compressed file is then copied ten times and these ten copies
are compressed again to a single file. Due to the redundant information the file
size does almost not grow and we repeat the process six times without getting a
large file at the last level. When deflating the file completely, 4PiB of disk space
are used, which should be too much for every forensic workstation in the next few
years.

The second test case is created by reading from /dev/zero on a Linux command line
and piping the result to the zip command. A first test showed that the resulting file
grew very large after only a few gigabyte of data, as zip could not apply the best
possible compression to its input. In a second attempt we create a file layer_0.zip
by piping 1TiB of zeroes to zip. We zip this file that still has a size of more than 1
gigabyte again two times, creating the files layer_1.zip and layer_2.zip. At the final
level we reach a file that only has a size of a few kilobytes.

The third test case is not created by ourselves but found on the internet during
our research on compression bombs [AER09]. It is a crafted png picture showing a
uniform red color with a width and height of 19,000 pixels each. The information
is stored in the file by making use of the compression feature of the png format.
Therefore, the compressed file size is only about 44KiB but the file deflates to 1GiB
when viewed in 24-bit color mode.

PDF Files

PDF files are used whenever content is shared that should not be manipulated by
its recipients. It is found as a frequent file format for publishing documentation
digitally and can include features such as interactive documents to fill out surveys.
In this thesis we use PDF as the format to raise the awareness of files having dif-
ferent types at the same time. We therefore use the files crafted by Ange Alber-
tini [Alb12].

The first test case consists of the Linux version of the file while the second test case
is made up of the Mac OS X version. As Albertini states on his website, the files
are “respectively valid Windows, Linux and OS X binaries, and also a working PDF
document, Jar (Zip + Class + manifest), and HTML + JavaScript files”. Depending
on the file extension and on the application used to view the files they behave like dif-
ferent file types. In our example we present the files to the forensic software as being
of type PDF. The interested reader is refered to the other work of Albertini, who has

4.4 Test Set 3: User Files 57

released a more complex example of these files as PDF slides to a talk that contain
the demo material of the talk when being unzipped and can be used as a PDF viewer
application to display themselves in presentation mode.

Without further testing them in the next chapter, we want to also refer the user on
some other PDF security issues found during our research ([Ste09], [Val08], [Fin09],
[Dec13]). The last one is the most recent coverage of PDF file issues that we could
find (updated in november 2013) and it presents an extensive roundup of tools,
techniques and software related to PDF (in)security.

5 Testing forensic software
(Evaluation)

In this chapter the test cases implemented in Chapter 4 are evaluated by applying
them to selected digital forensic software products. The exact software tools and
versions are given in Section 5.1 before the test cases related to the three schema
leaf nodes (see Section 3.3) are evaluated separately in Sections 5.2, 5.3 and 5.4.
Section 5.5 finally summarizes the results and gives an overview on the efficiency of
the implemented test cases.

A complete list of all test cases is given in Appendix F. Each test cases has a unique
alphanumeric identifier of the form A_B_C_D. The value at position A indicates
the basic categorisation in FS (File System), OS (Operating System) and UF (User
Files) related test cases. Positions B and C further refine the categories in the
same way they are presented in Chapter 4. For example, the prefix OS_W_REG is
common to all test cases that deal with Reg istry files on W indows operating systems.
The last value at position D is used to enumerate test cases in a single subcategory.
It does not necessarily reflect the order in which the test cases are presented in the
sections of Chapter 4, but often this will be the case. Furthermore, a list of files
belonging to each test case is given in the appendix. File name, md5 hashsum and
file size of at least a single file making up the test case and often additional files, for
example the evidence that must be found by forensic software during analysis, are
listed.

The intention of a test case is explained by specifying obligatory, ideal, alternatively
allowed and bad behaviours. To classify a behaviour into one of these categories
the “Basic Concepts and Taxonomy of Dependable and Secure Computing” of Aviže-
nis et al. [ALRL04] are used. In their work, the authors define, among others, the
following terms. Apart from their definition we give a short explanation on what
every term means in context of forensic software and how we define the relevance of
every single aspect.

availability “readiness for correct service.” Forensic software is able to start process-
ing evidence and can be used for investigations. It is ready to work at the time
when it is needed. Relevance: medium

reliability “continuity of correct service.” Forensic software continues to process ev-
idence once it has started and finishes the task. It does not start to behave
incorrectly in the middle of an investigation. Relevance: medium

60 5 Testing forensic software (Evaluation)

confidentiality “absence of unauthorized disclosure of information.” Forensic soft-
ware does not leak information from a processed case to people that are not
allowed to view it, e.g., the accused person. Relevance: low to medium

integrity “absence of improper system alterations.” Forensic software works abso-
lutely sound and produces correct results. Relevance: maximal

maintainability “ability to undergo modifications and repairs.” Forensic software
can be updated and repaired after a crash. Relevance: medium

It is important to note that the the chosen relevance levels do not indicate how
important a certain aspect is for forensic investigators. It is in contrast very im-
portant, not least from a legal perspective, that information found out during the
research remains confidential. However, a forensic laboratory environment correctly
secured against external access (see, e.g., [Ges11]) has a lower risk of an information
leak. Nevertheless, internet access can not be ruled out completely and in that case,
the risk becomes much higher. Finally, one must also not forget highly specialised
malware such as Stuxnet that originally came into nuclear plants without internet
access via USB device vulnerabilities. All in all, we rank the confidentiality level as
medium. Availability, reliability and maintainability all have to do with the work-
ing state of forensic software. It is indeed annoying if a test case can successfully
prevent software from working but in general this is not a critical thing, as long as
extensive logging information is present that shows which parts of the evidence have
been already analysed and which parts are still missing. One must however keep in
mind that forensic investigations may be bound to a strict deadline at which infor-
mation must be reported. In those cases a continuing crash of software can become
an important factor. Integrity is the most important concept. Forensic soundness
is absolutely required and correct results are crucial for the work of investigators.
Therefore, integrity is given a maximal relevance.

With those definitions in mind, we chose the naming obligatory behaviour for all
things a software must do. This is influenced by the integrity aspect and mostly
states that software must correctly discover evidence aspects that are further speci-
fied. Ideal behaviour is an additional category on top of the obligatory part. Here,
we describe what software should do to be a model example with well-documented
behaviour. Behaviour in this category is very welcome but absence of it will not be
considered a flaw. If an analysed software tool can for any reason not accomplish
the obligatory part it has the possibility of an alternatively allowed behaviour, that
is, behaviour that is present as a fallback strategy. For example, if a file cannot
be analysed completely because it is altered beyond recognition software must show
a warning message after terminating the analysis. At last, bad behaviour describes
everything that software should not do when analysing the test cases. Behaviour in
this category is marked with either [c] or [p], separating it in critical and potentially
critical behaviour. The latter includes behaviour that does not directly lead to false
results, for example wrong error messages, but could irritate an investigator and
lead to wrong conclusions. Most importantly, software crashes are also located in

5.1 Evaluated Software 61

this category. These will often not be critical, but could be based on errors like
buffer overflows that, when exploited more sophisticatedly, can lead to a whole new
area of vulnerabilities, namely the complete compromise of the forensic software.
The work of Newsham et al. [NPSB07] shows that every crash must be researched
on its own with help of debugging software to find out whether it is extremely dan-
gerous or just annoying. Such a level of detail goes beyond the scope of this thesis.
Readers must keep in mind that an error located in the potentially critical category
can in the worst case alter the evidence itself.

The evaluation overview in every section is given in tables correlating the results of
test cases to the respective programs. We use three different types of correlation to
abbreviate the detailed test case descriptions given in Appendix F.

optimal An optimal test result means that the software behaves not only correctly
in terms of obligatory or alternative behaviour, but additionally fulfils the ideal
behaviour part.

acceptable An acceptable test result is one that either fulfils the obligatory or alter-
native behaviour. Improvements need to be made to reach an optimal result.

flawed When the result is flawed, at least one of the bad behaviours specified occurs,
or neither the obligatory nor the alternative behaviour are reached.

5.1 Evaluated Software

Before we can present the evaluation results we have to define which software we use
to gather the results. The amount of available software is vast and we therefore take
a subset of it to get a cross section through the forensic sector. From the commercial
sector we test Software A from Company A, a company that sees itself as market
leader in forensic software. Software B is chosen as a widespread competitor. As open
source allround alternative, Software C is tested and the results are compared with
command line tools asmount and ls found on a standard Kali Linux 1.0.5 installation.
The choice falls on Kali Linux because it has an advertised forensic mode for use as a
live system [Off13b]. However, the tests are conducted in the normal operating mode
after installing Kali permanently to a (virtual) hard drive, because we are interested
in the general behaviour and let the evaluation of its live system qualities to others.
While we make sure to test the most recent versions of the first three mentioned
softwares, the command line tools are used in the respective version found in the
Debian package repositories. For some tasks with very specialised requirements, for
example the ability to analyse Macintosh Spotlight databases, additional software
is considered because the other competitors do not include this function. In these
cases, the exact naming and version of the program is given in the corresponding
subsection dealing with the test cases.

62 5 Testing forensic software (Evaluation)

5.2 File System Based Evaluation

In this section we present the evaluation results of file system related test cases, that
is, those that are identified by the prefix FS_. For the sake of clearness the results
are presented in a graphical way in Figures 5.1 and 5.2. As one can see from the
figures, different software tools are used for the subclasses of FS_DL and FS_PC
test cases. This is because the open source software tools used do not possess the
features to analyse multiple types of files.

When dealing with directory loops, single partition images are analysed that are
understood by tool_A and tool_B, two tools that are part of Software C. After
mount ing the files, they can also be viewed with the command line tools ls and find.
Here, the two commercial tools only do an average job. Software A is always able
to find both evidence files inside the images, but does in no case detect that the file
system structure is somehow corrupted by a loop, and neither does Software B. The
latter even misses the file evidence.txt in the first and last DL test case, which leads
to a flawed result. tool_A is not completely comparable because it only lists meta
information about the used file system. In four out of five test cases, information can
be taken therefrom that hints at the correct file and folder number that should
be found by other tools. For example, in the FAT test cases the program shows the
number of used FAT entries that should be equal to the number of recovered files and
folders. The companion to tool_A is tool_B, also from Software C and executed with
the -r option to recursively show all files and folders inside the disk image. Only
in case of NTFS tool_B is able to list the evidence.txt file, in all other cases it
is missed. Not even the notbig.txt file from test case FS_DL_FAT_2 is shown in
the output. When viewing the mounted file systems, the evaluation criteria differ a
bit. ls and find do not need to list the hidden evidence.txt files, because they are
designed to only show files that are not deleted. find is executed with the option -ls
to produce an output comparable to ls itself. However, both tools do not use the
same code base, which can be seen in test case FS_DL_HFS_1, where ls produces
an error, warning that it could not read the contents of folder top, but find only
shows top without stating that something went wrong. In the first, third and
fifth test case both tools behave ideal by warning the user of a directory loop and
indicating its position.

Figure 5.1: The evaluation result of the DL test cases.

5.2 File System Based Evaluation 63

For the PC test cases, other open source software is used. tool_C and tool_D are
Software C’s volume image equivalents to tool_A and tool_B. They are comparable
to those and have in common that tool_C only lists very basic information, more
precisely only the partition table type. If it does this correctly the result is considered
acceptable. However, both Software C programs fail in the same three test cases.
The first two MBR test cases implement two variations of partition table loops, which
both programs do not detect. Instead, they run endlessly and start to slowly
consume memory space. The increase in memory is indeed very low and does not
reach the critical point to crash the system, even if the programs run for about an
hour. In the third GPT test case, they both fail to detect that the GPT structure
is present after the manipulated MBR header. This is a problem shared with both
commercial tools. Neither Software A nor Software B detect that a GPT partition
table is present after the first sector and instead present the MBR layout to the user.
In test case FS_PC_MBR_1 out of the first four programs only Software B
correctly shows both partitions but fails to warn the user of a loop. Software A on
the other hand presents the disk image as being completely unallocated and is in
this test case completely useless, a behaviour that we also observe in the second
MBR test case. Here, Software B even crashes reproducibly, producing no log
message or error report at all. In all other cases the first four tools behave at least
acceptable. FS_PC_MBR_3 and FS_PC_GPT_2 are the partition tables with
199 partitions each, where both Software A and tool_D can score an optimal result
by showing all data. The behaviour of Software B is acceptable, because it warns
the user that the “maximum number of internally supported partitions [is] reached”
after partition 128.

Figure 5.2 reflects that we choose fdisk and gdisk as command line tools for printing
the partition tables. fdisk only supports MBR partition tables and we therefore
complement it by gdisk. The two programs have the same capability as parted,
which is the last program tested. For these three programs the criteria are again a bit
different. As all of them only print out partition tables they can score acceptable and
even optimal results without showing any evidence file, simply because they do not
support looking into the partitions. The combination of fdisk and gdisk works nearly
perfect and achieves optimal results in 8 out of 10 test cases. In the MBR test
cases 2 and 3, fdisk fails at its limit of only showing 60 partition entries. Detecting
60 partitions in test case 2 clearly means that fdisk does not correctly detect the loop
and tries to endlessly look at the file, but the result is still acceptable because after
finishing at partition 60 the user is warned that the partitions are not shown in the
same order as they are on disk. This, together with the displayed partition offset,
makes it possible to detect the loop. The results of parted are not as robust as of
fdisk/gdisk, but it can also reach an optimal evaluation in five test cases by giving
detailed error messages correctly indicating the manipulation. Nevertheless, two test
cases are only finished with a flawed result. In test case FS_PC_MBR_5 the
program shows a wrong error message, which is considered a bad behaviour. In
the GPT test case 2, the one with 199 partitions, parted again shows a wrong error

64 5 Testing forensic software (Evaluation)

message and states that “both the primary and backup tables are corrupt”, probably
because the increase of the maximum partition amount is not understood. The three
remaining test cases are finished acceptably, because the error messages shown are
not sufficiently clear to be considered optimal.

Figure 5.2: The evaluation result of the PC test cases.

5.3 Operating System Based Evaluation

The second group of test cases is the one related to operating system files, which are
therefore indicated by the prefix OS_. Again, we present the results in two different
figures because the tested software differs depending on the files that are of interest.
An evaluation of the Linux based test cases (OS_L_) is completely left out. This
is because we could not find any open source software specialised in analysing these
formats and none of the commercial software tools supports an automated analysis of
Linux files, at least not of system logs and bash history.

Figure 5.3 shows the evaluation result for anything related to Windows OS files.
Apart from Software A and Software B, Software D in version XYZ on Linux, the
Jump List parser Software E on Mac OS X, Software F in version ABC on Linux,
a registry editor (Software G) on Linux and Software H on Windows are evaluated.
From these, Software E is the only tool that is not open source but instead tested
in a free demo version with reduced functionality in comparison to the commercial
product. It is important to note that none of these missing functions limit the
usability of the demo version. They are instead all comfort functions. In comparison
to the FS test cases, one can clearly see that the overall result on OS test cases has
a lower quality. Fewer optimal results are present and the relative amount of flawed
scorings is also much higher. Another eye-catching attribute of Figure 5.3 is that no

5.3 Operating System Based Evaluation 65

Figure 5.3: The evaluation result of the W test cases.

single software supports all test cases. Admittedly, the free software alternatives are
selected due to their specialisation in one area but even Software A, advertised as
all-in-one solution, could not be setup to work on the OS_W_EVTX test cases.
This is remarkable as parsing of event logs is one of the more common tasks. We can
therefore not rule out that our Software A test installation behaved incorrectly during
the tests and that other installations will be able to complete them. The bad EDB
evaluation results for the program are based on the fact that Software A reports all
files to be Windows email databases. As Outlook supports this form of email storage,
this is not a completely random choice. However, the software fails to detect that
another version of edb database is present and could therefore set an investigator
on the wrong track. When dealing with Jump Lists and registry files, Software
A does a good job and even detects a corruption in test case OS_W_REG_1.
Nevertheless, it shows flaws when working with the fuzzed test cases and often
misses to report obviously corrupt files. For example, 37 out of 100 files produce
entirely empty output, even though they have a file size greater than zero and a
hexadecimal look into the files shows that they are not fuzzed beyond readability of
at least text fragments. The same behaviour can be observed in Software B, which
otherwise works acceptable on registry files and does not produce display errors.
The outcome of testing fuzzed event logs has to be evaluated as flawed, because the
program interprets 42 out of 100 files as event log, sometimes showing clearly
wrong results, e.g., only 25 displayed log entries in a file that is reported to have
2963 entries.

The result on the free software examples is mixed. In the second EDB test case,
Software D somehow interprets the injected loop, but at least stops after having

66 5 Testing forensic software (Evaluation)

produced twice as much output as on the original file. This is not critical, but also
not acceptable without printing an error message. The fuzzed edb files only pro-
duce an output in 10% of all files. In these cases the output looks acceptable, but
missing error messages and verbose output that in some cases result in over 200MiB
big text files blur the otherwise good working. For forensic purposes, Software
E is useless and one better resorts to Software A if possible when analysing Jump
Lists. Software E often produces empty results without warning and fails to han-
dle strings with inserted newlines correctly. In test case OS_W_JL_2 this results
in a terminated string in the middle of a URI. Another software in a non-working
state is Software G, which is even worse because the program is directly targeted
at digital forensics. On our first manipulated registry file, Software G crashes with a
segmentation fault, the second file is simply shown as containing no registry keys
at all. In the third test case an injected nullbyte terminates the displayed string,
which enables malicious users to hide data. Alone the behaviour on the fuzzed reg-
istry files is outstanding. 19 out of 100 files are displayed and look good from
what we can see. Due to the deeply nested structure it is complex to give an overall
evaluation. Even more remarkably, all other files are rejected with detailed error
messages, a behaviour that is commendable. Software F and Software H both
show good performances in their respective specialisations. The former behaves
best of all tools in this category by printing warning messages that the analysed
file is corrupt. The latter is more difficult to compare with the other programs due
to its different design. However, none of the exporting actions was affected by our
manipulated files.

Figure 5.4: The evaluation result of the M test cases.

Aside from Windows the amount of supported file formats drops quickly. For Mac
OS X there are still software tools that can be found to facilitate the analysis but
when dealing with Linux, investigators are pretty much left on their own. The best
coverage on Mac OS X files is achieved by Software A. Plug-ins enable Software A

5.3 Operating System Based Evaluation 67

to handle property list and system log files of Mac OS X, so that only the Spot-
light Database test cases remain uncovered. The property list plug-in works quite
good and produces an optimal result in the first test case by reading the XML
file flawlessly and warning that the binary file could not be read. Test case 2 is
also processed quickly and with a complete result. However, the misuse of XML
elements in the third test case causes a major problem for the plug-in. The ex-
pected structure is applied to a file in any case, which, if malicious content is present,
leads to a shifted display of keys and values in the following and thereby produces
wrong output. Surprisingly, the same result can be observed in the plist viewer
that is preinstalled on Macintosh computers. The tested version on Mac OS X 10.6
simply stops displaying the file after the first unexpected element and gives the
impression that no more content follows. When viewing the minimal file from test
case 1, the viewer shows the content of both binary and XML version, but the file
preview shows that the missing header information is inserted without informing
the user about that. Changing evidence without notice is unacceptable and leads
to a flawed evaluation. Although the results of the plist viewer are not the best
we do not consider it bad software per se. One should only keep in mind that it is
not intended for forensic purposes and our test shows that one does better not rely
on it during investigations. The log file support in both Software A and Software
B is pretty rudimentary. Both simply provide a text digest of the unreadable file
format and show the entries as is. Neither of the programs has problems with
injected characters of any kind, but the Software A log file plug-in produces errors
while parsing the misformatted log entries from test case OS_M_LOG_1, in which
case it tries to regroup multiple entries and ignores line breaks in between to find
a format that looks as expected. This leads to an unacceptable result, but it is
the only one along the log file test cases in both software tools. The last tool we
have a look at is Software I of Company I that supports both live view and export
of Spotlight databases. In test case 1, neither of both features is affected by the
injected characters and the only thing that prohibits an optimal rating is a miss-
ing warning message that something unusual has been detected. Nevertheless,
the result is worse when analysing the fuzzed databases. 36% of them are inter-
preted as Spotlight database and the other ones are correctly rejected with an
error message that prints the whole stacktrace of the catched exception. The live
view functionality seems largely unaffected by the fuzzing but when exporting
the analysis to a CSV document, the output grows very large in multiple cases.
Spotlight files that have a size of less than 6MiB sometimes produce almost 200MiB
CSV output that crash Libre Office when trying to view them. In that cases, some-
thing must clearly work wrong inside the program and we consider the test case
flawed.

68 5 Testing forensic software (Evaluation)

5.4 User File Based Evaluation

In Figure 3.4, the last highlighted node of file types are the user files. The related
test cases, prefixed with UF_, are evaluated in this section. Figure 5.5 gives an
overview of the results and shows that the general situation is even worse than in
the previous section dealing with OS files. More than half of all results cannot
be rated better than flawed. When dealing with user files forensic software tools
often ask the investigator to analyse them in an external viewer application. This
is why we choose the commonly used software tools VLC Player 2.1.2 and Libre
Office 4.1.3.2 on Mac OS X, as well as Software J from Company J and Software K
from Company K on Windows. The latter two softwares were found by an internet
search looking for viewer applications especially designed for forensic purposes. The
results however show that labelling a software forensic does not mean that it works
forensically sound. In contrast, Software J is the worst working program tested
throughout the whole thesis. It blindly shows only the reduced resolution pictures in
PIC_1 and even shows resolution metadata that has neither to do with the real, nor
with the fake size of the pictures. When displaying the animated gif from the second
test case, the program only shows a black picture, which is even less than the first
frame of the file. In test case UF_MM_PIC_3 it does not show the meta fields
that are present in the file and finally, test cases 4 and 5 result in a flawed evaluation
because the software does not even support multiple pictures inside of tiff files. One
could argue that this can also be seen as acceptable in the latter test case, as the
lack of multi-picture support also prevents the software from looping endlessly, but
at the same time the secretely available second picture stays hidden in the file and so
we decide for the unacceptable result. The evaluation of Software K is not much
more satisfying. When trying to open the mbox file from test case UF_OF_M_1
the software simply shows nothing without giving any warning that something is
corrupt. In test case 2 it does show such a warning (“maximal line length exceeded”),
although we do not see a reason for this message, as we left the line lengths in this
test case untouched. The other three email test cases deal with formats that the
software does not even support, a thing we did not expect from a dedicated email
viewer and that we only found out after installing the program. From Figure 5.5 the
results of VLC Player and Libre Office look not much better, but we want to remind
the reader that their primary use case is not a forensic investigation. On the fuzzed
audio files, VLC Player behaves ambiguously. On the one hand it shows a very
robust performance on the MP3 files, where it can play every single file, but on the
other hand the result is not so good in the case of ogg files, where meta information
is often missed and no sound is played in multiple examples. This can either mean
that the codec VLC Player uses for ogg is not as robust as the MP3 codec, but it
can also mean that ogg files can much more efficiently be fuzzed to a degree at which
they become unreadable. Libre Office in turn misses the hidden evidence in the
ODF test cases 1 and 3. This is interesting, as we created test case 1 with exactly
this program. At evaluation time, we now mount the hard disk containing the test

5.4 User File Based Evaluation 69

cases read-only, which is the reason why the hidden conditional text can no longer be
seen by Libre Office. It does also not show information on a hidden file included
in the document in test case 4, which is understandable because of the intended use
case of the program. However, we defined this behaviour as being unacceptable
for a forensic viewer program.

The commercial software tools Software A and Software B are designed to be as com-
plete as possible, which is achieved by implementing the viewer component Outside
In of Oracle [Ora13b]. Therefore, the results of both programs are comparable in
many cases. Surprisingly, our installation of Software A had problems with showing
metadata of audio and video files, as well as with previewing odt files. As already
stated in the previous section, we cannot rule out that the installation we had access
to during our research was incomplete in some way. It is in any case not unlikely, as
we also had to install the Outside In viewer component for Software B additionally.
However, the viewer component is not completely absent. It can display the files of
the email test cases and produces simple but robust output that is not affected
by any of the manipulations. The pst file format is instead processed by the foren-
sic software itself. Software A here shows a major misbehaviour by repeatedly
terminating its execution without an error message. It is indeed possible to preview
the file using a text or a hexadecimal view, but the crash leads to an evaluation
result of flawed. The behaviour of Software B is exactly the opposite. After
the program is told to export emails out of archives it starts working and produces
2315 single output files. Additionally, it marks the pst file with a warning message,
stating that it could not completely export the file and giving more details on
where the error occured. The UF_V_PDF test cases are also displayed by the Out-
side In viewer, which fails on both files. The acceptable result of Software A is
explained by the very prominent placing of the hexadecimal view, where the ELF
header of the file indicating its ambiguous nature can easily be seen. Software B at
least shows a file format of ELF on one of the two files after refining the evidence,
an option where additional deeper analyses are done. The picture preview of Soft-
ware A is mostly based on the viewer component, which does not recognise the
wrong resolutions, the animated gif and the metadata in the third test case. When
viewing tiff files, Software A previews them with only the first page visible but asks
the user to open the file in an external viewer when clicking on them. On test case
UF_MM_PIC_5 Software B crashes, which results in a flawed score, but warns
the user in detail which file caused the crash after it is relaunched. To value this
good behaviour, we mark the result with a * in the overview. In test cases 2 and 4
the software confirms the positive impression by both detecting multi-page tiff
and animated gif and flagging them for manual review in a program that supports
the formats.

Finally, we evaluate compression bombs and come to the result that they are hard
to handle for forensic software. Software A does simply not show anything when
trying to view the very high resolution picture from test case UF_V_CB_1. When
decompressing the zip bomb from test case 2, it runs for a long time and starts

70 5 Testing forensic software (Evaluation)

consuming a lot of disk space. We stopped this test manually after an hour and
consider it failed. In test case 3, Software A does not decompress the zip bomb
to its actual value of 1TiB but instead only decompresses about 1GiB. However,
as it does not indicate any problem but presents the output as if it was the correct
content of the zip file, this test case also results in a flawed evaluation. Software B
can successfully show the image from test case 1, after it becomes unresponsive for
a few minutes. In test case 2, it crashes continuously after reaching the lowest
compression level and always warns the user that random_0_0.zip, the first file in
the lowest level, should be excluded from the analysis. When excluding it via a filter,
Software B fails on the next file in the same level. Test case UF_V_CB_3 is very
similar to one that has already been reported to the developer of Software B. This
is why when extracting the third zip file test case, the software only automatically
extracts two levels of data. When we want to manually extract the lowest level,
Software B warns us that the file might be a compression bomb and does not start
the extraction without our explicit command.

5.5 Evaluation Results

In this section we summarise the results from this chapter. Overall we found 66
cases in which the programs did not behave as they should. We also detected 33
cases of ideal behaviour. These are mostly found when analysing the file system
related test cases. After having worked with all programs mentioned in this thesis
we think that this distribution is not primarily based on the design of our test cases
but on the varying quality of the software regarding the different classes of tests.
Forensic software developers today want to include as many features as possible, so
that potential customers decide for their product. They therefore use third party
components as Outside In or open their software for community based plug-ins,
which lowers the overall quality. The test cases that we created for OS and user files
are hard to apply to all softwares found on the market, because the functions differ
very much. Here, targeted test cases would lead to more solid results. Additionally,
the choice of test cases might not have been perfect, which is shown by the difficulty
to find free software alternatives for the commercial products. A low amount of
available software can mean that the real world needs of forensic investigators are
located at different file formats. On the other hand, all test cases are valid examples
that could be found during investigations and often it is possible to hide evidence by
using the presented manipulations. Therefore, the lack of software also means that
more research has to be done on some file formats.

The results in Section 5.4 also show two other things. Often forensic investigators
use normal software as Libre Office or VLC Player to have a look into files. By doing
so, they might miss information that is hidden in special ways. If it seems likely in
an investigation that a suspect has something to hide, more detailed solutions must
be applied. It would for example be possible to find the hidden jpeg image in the odt

5.5 Evaluation Results 71

Figure 5.5: The evaluation result of all UF test cases.

72 5 Testing forensic software (Evaluation)

file with the help of file carving, a technique where files are located by their header
information. The other thing shown is that the detection of compression bombs
is extremely difficult, if not impossible. Compressed files can by design contain
huge amounts of data that is legitimate, but they can as well contain garbage data
to consume resources on the investigator’s computer. The example of Software B
shows that even after implementing a compression bomb detection heuristic, not all
variants of them are detected.

6 Conclusion

This chapter recapitulates the work done in the thesis. An overall explanation on
what was done is given in Section 6.1. We show the advantages of having a schema
where structured test cases can be derived from and summarise the results that were
found out while working on their implementation. Furthermore we give ideas on
additional work that infers from our work in Section 6.2.

6.1 Advantages of Structured Testcases and Summary

At the beginning of our thesis a new schema was developed. We designed it with
the special needs of forensic tool testing in mind and built it around the many
different types of input that can be given to a forensic software product. The goal of
the schema is to be a complete overview of all possible input types, although three
specific ones were selected to work with. We defined them as File System Related, OS
Related and User File Related and chose them because they represent the for us most
common type of forensic analysis, the post mortem analysis of data. In Chapter 4
we gave test case implementation examples for these types of input. These test cases
were then evaluated in Chapter 5.

The advantage of having a structured schema as base for test case derivation over
just implementing what comes to mind is shown by the ability of the tested tools
to process the test files, or rather by the lack of doing so in some examples. As we
chose our test cases to represent a cross-section through all different types of data
we also selected file formats that are not so well supported. Our work shows in
detail where the functionality of forensic software must further be improved. This
is especially the case when dealing with OS and user files and more related to the
allround software products as to the smaller specialised programs. When using our
schema one can easily decide on the types of user input that one faces most often
during investigations. Every person working in digital forensics can thereby find
their own subset of test scenarios that tests his or her forensic laboratory setup in
the most effective way.

As we could see in Chapter 5, flaws can be found easily in a relatively fast way when
using our prepared test cases. This is not only good for investigators to do a quick
survey of their software but also for developers that just start securing their software
against anti-forensic risks. The earlier errors are detected, the cheaper and easier

74 6 Conclusion

to conduct the error correction is. Of course, our approach cannot only target new
software products but also longer existing ones. Errors can exist in every phase of
the lifecycle and one must always keep in mind that the absence of flaws does not
provide one hundred percent security. Our test cases are designed to be a starting
point. They are for example well suited to test the free software products on the
market. Here, many flaws could be found, probably because not all developers have
thought of anti-forensic attacks so far. Due to the broad range that we covered,
every topic is only treated as deeply as it was possible in the short amount of time.
When the robustness of software rises in the future our test cases need to be refined
by other persons, which leads us to the next section.

6.2 Future Work

The test cases presented in this thesis provide a starting point in structured forensic
tool testing. We believe that a structure is very helpful to coordinate the development
of tests between multiple people. Therefore, we encourage everybody to use our
schema and propose improvements to it. The more forensic investigators give input,
the more realistic it will become. In terms of test cases, everybody with a deeper
knowledge of a certain topic is welcome to produce more detailed ones. By sharing
the test cases with the forensic community, everybody can profit and the overall
quality of the discipline will probably rise.

We limited ourselves to test cases dealing with post mortem data. In future it
will be necessary to expand the coverage to all kinds of input. A growing threat
to forensic software are not only prepared test cases but also active attackers that
penetrate into networks that are thought to be secure. The writeblocker example
depicted in Section 3.3 underlines that even components that are designed as barriers
securing the evidence might contain vulnerabilities. It is even more disastrous that
the mentioned writeblocker is specifically designed to be connected to a potentially
dangerous network to gather evidence from it and that it anyhow was trivial to
penetrate it via this interface.

In continuation of this thesis, the flaws have yet to be reported to the developers.
After this has been done, the test cases along with the schema will be presented to the
forensic community. They will be submitted to NIST or CFReDS to become part of
standardisation processes. Additionally, we will report the test cases to the unofficial
forensic tool testing mailing list mentioned in Section 1.3 once we get admitted to
it. The response from any of these actions will most likely result in additions and
changes to both test cases and schema.

We conclude this section and thereby the thesis with the invitation to test more tools,
especially the tools that one uses normally during work. It is specifically important to
repeat the testing with every new version of a software release, because flaws can not
only be patched away but also be introduced inadvertently.

6.2 Future Work 75

Information security is a fast-growing industry and new threats that we do not yet
think of now can emerge quickly. It is important for everyone to stay up-to-date,
both with software and knowledge. The security mindset in the forensic community
must further increase and everybody should spread the word that evidence may at
the same time be helpful and dangerous.

A Acronyms

CFTT Computer Forensic Tool Testing Project

NIST National Institute of Standards and Technology

CFReDS Computer Forensic Reference Data Sets

CWE Common Weakness Enumeration

CVE Common Vulnerability Enumeration

StPO Strafprozessordnung

PLOVER Preliminary List of Vulnerability Examples for Researchers

RAM Random Access Memory

afr anti forensic rootkit

MBR Master Boot Record

GPT GUID Partition Table

VM Virtual Machine

LBA Logical Block Address

NTFS New Technology File System

OS Operating System

EDB Extensible Storage Engine Database

B Test Cases On CD-R

This CD contains all test cases that have been implemented in this thesis. The test
cases are ordered in a folder structure that matches the test case identifiers. They
are provided in a compressed (tar.gz) form to save space.

C Complete Schema Tree

The next page shows a full schema overview printed as big as possible. However, as
the schema is very broad the tree structure is difficult to fit on a single page. For
better readable excerpts, see Section 3.2.

82 C Complete Schema Tree

Figure C.1: A complete overview of the schema.

D Screenshots

Figure D.1: The interface of Synalyze It!, showing the use of a grammar for PNG
files.

E Radamsa Mutators

If radamsa -l is executed, the following list, showing options to configure the fuzzing
process, is printed. If no option is given, which is the recommended use, radamsa ran-
domly chooses mutations and mutation patterns for the input.

Mutations (-m)
bd: drop a byte
bf: flip one bit
bi: insert a random byte
br: repeat a byte
bp: permute some bytes
bei: increment a byte by one
bed: decrement a byte by one
ber: swap a byte with a random one
sr: repeat a sequence of bytes
ld: delete a line
lr2: duplicate a line
li: clone and insert it nearby
lr: repeat a line
ls: swap two lines
lp: swap order of lines
td: delete a node
tr2: duplicate a node
ts1: swap one node with another one
ts2: swap two nodes pairwise
tr: repeat a path of the parse tree
uw: try to make a code point too wide
ui: insert funny unicode
num: modify a textual number
ft: jump to a similar position in block
fn: likely clone data between similar positions
fo: fuse previously seen data elsewhere

Mutation patterns (-p)
od: Mutate once
nd: Mutate possibly many times
bu: Make several mutations closeby once

86 F Test Sets

87

F Test Sets

FS_DL_FAT_1

file name md5 file size
FS_DL_FAT_1.dd 3451c9e7de48d53248b536e12b01938d 104 857 600B
cotton.txt b2c4c8e1c7da08143ec21ba088b3ac53 13B
evidence.txt e314e89d4e3ea2806be9a179f3161045 16B
Description:
The image contains a FAT-32 file system with a directory top, therein a directory
bottom and a file cotton.txt with text “evidence_top”. bottom contains a file evi-
dence.txt with text “evidence_bottom”, but when opening the directory it points
back to top.

To be used on:
Tools that read and analyse single partition images

Obligatory behaviour:
Detect files cotton.txt and evidence.txt

Ideal behaviour:
Detect loop
Scan file system and ensure that nothing was missed due to the loop
Display that evidence.txt probably belongs inside of bottom
Show correct disk usage (5 blocks, 2.5KiB)

Alternatively allowed behaviour:
Stop processing after having reached a fixed level of depth and warn user that not
everything might have been analysed
List evidence.txt as deleted without stating that its cluster is not unallocated
Show inconsistent size of occupied space and warn about that

Bad behaviour:
Show wrong error messages [p]
Show wrong size of occupied space without warning [c]
Crash / Become unresponsive [p]
Ignore cotton.txt [c]
Ignore evidence.txt [c]

88 F Test Sets

FS_DL_FAT_2

file name md5 file size
FS_DL_FAT_2.dd 1920368c1377a98159d6f782d8e1580d 104 857 600B
notbig.txt 4ffd2964ee762ab57000512b61b22ed5 17B
Description:
The image contains a FAT-32 file system with a file notbig.txt containing the text
“This is not big.”. The file’s FAT table entry has been modified to point to itself,
causing a loop. The file’s size has been modified to be the maximum in FAT-32,
4 294 967 295B.

To be used on:
Tools that read and analyse single partition images

Obligatory behaviour:
Detect file and show its content

Ideal behaviour:
Detect anomaly within file
Show real file size

Alternatively allowed behaviour:
Stop processing and warn that the file could be bigger than read out

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Skip file without a notification [c]

89

FS_DL_NTFS_1

file name md5 file size
FS_DL_NTFS_1.dd bc2620575af7be3638006335bedf7e1c 104 857 600B
cotton.txt b2c4c8e1c7da08143ec21ba088b3ac53 13B
evidence.txt e314e89d4e3ea2806be9a179f3161045 16B
Description:
The image conains an NTFS file system with a directory top, therein a directory
bottom and a file cotton.txt with text “evidence_top”. bottom contains a file evi-
dence.txt with text “evidence_bottom”, but when opening the directory it points
back to top.

To be used on:
Tools that read and analyse single partition images

Obligatory behaviour:
Detect files cotton.txt and evidence.txt

Ideal behaviour:
Detect loop
Scan file system and ensure that nothing was missed when stopping
Display that evidence.txt probably belongs inside of bottom
Show correct disk usage (5096 blocks, 2548KiB)

Alternatively allowed behaviour:
Stop processing after having reached a fixed level of depth and warn user that not
everything might have been analysed
List evidence.txt as deleted without stating that its cluster is not unallocated
Show inconsistent size of occupied space and warn about that

Bad behaviour:
Show wrong error messages [p]
Show wrong size of occupied space without warning [c]
Crash / Become unresponsive [p]
Ignore cotton.txt [c]
Ignore evidence.txt [c]

90 F Test Sets

FS_DL_HFS_1

file name md5 file size
FS_DL_HFS_1.dd 1fd0e8efa0eba5c4175c09085629daeb 104 857 600B
cotton.txt b2c4c8e1c7da08143ec21ba088b3ac53 13B
evidence.txt e314e89d4e3ea2806be9a179f3161045 16B
Description:
The image conains a HFS file system with a directory top, therein a directory
bottom and a file cotton.txt with text “evidence_top”. bottom contains a file evi-
dence.txt with text “evidence_bottom”, but when opening the directory it points
back to top.

To be used on:
Tools that read and analyse single partition images

Obligatory behaviour:
Detect files cotton.txt and evidence.txt

Ideal behaviour:
Detect loop
Scan file system and ensure that nothing was missed when stopping
Display that evidence.txt probably belongs inside of bottom
Show correct disk usage (4840 blocks, 2420KiB)

Alternatively allowed behaviour:
Stop processing after having reached a fixed level of depth and warn user that not
everything might have been analysed
List evidence.txt as deleted without stating that its cluster is not unallocated
Show inconsistent size of occupied space and warn about that

Bad behaviour:
Show wrong error messages [p]
Show wrong size of occupied space without warning [c]
Crash / Become unresponsive [p]
Ignore cotton.txt [c]
Ignore evidence.txt [c]

91

FS_DL_EXT4_1

file name md5 file size
FS_DL_EXT4_1.dd 57587f82a2bf2589819846bf95286d06 104 857 600B
cotton_1.txt d4c83337f8d112afbf6705237899f70d 15B
cotton_2.txt 170aa693f63c380355c6d7e608832e0a 15B
evidence_1.txt f21544abfa33976d11dbbfb63d9a15aa 15B
evidence_2.txt 8df827c6a4e214133acfd60b0d0a0537 15B
Description:
The image conains an EXT4 file system with two directories top_1 and top_2.
top_1 contains a folder bottom_1 and a file cotton_1.txt with text “evi-
dence_top_1”. top_2 contains a folder bottom_2 and a file cotton_2.txt with
text “evidence_top_2”. bottom_1 contains the file evidence_1.txt with text “ev-
idence_bottom_1”, but instead of showing the file, the folder points to top_2.
bottom_2 contains the file evidence_2.txt with text “evidence_bottom_2”, but
instead of showing the file, the folder points to top_1.

To be used on:
Tools that read and analyse single partition images

Obligatory behaviour:
Detect the four files cotton_1.txt, cotton_2.txt, evidence_1.txt and evidence_2.txt

Ideal behaviour:
Detect loop
Scan file system and ensure that nothing was missed when stopping
Display that evidence_1.txt probably belongs inside of bottom_1
Display that evidence_2.txt probably belongs inside of bottom_2
Show correct disk usage (4840 blocks, 2420KiB)

Alternatively allowed behaviour:
Stop processing after having reached a fixed level of depth and warn user that not
everything might have been analysed
List evidence_1.txt and evidence_2.txt as deleted without stating that its cluster
is not unallocated
Show inconsistent size of occupied space and warn about that

Bad behaviour:
Show wrong error messages [p]
Show wrong size of occupied space without warning [c]
Crash / Become unresponsive [p]
Ignore cotton_1.txt [c]
Ignore evidence_1.txt [c]
Ignore cotton_2.txt [c]
Ignore evidence_2.txt [c]

92 F Test Sets

FS_PC_MBR_1

file name md5 file size
FS_PC_MBR_1.dd 3c640766c54a3b570a9c8a5acae9f091 104 857 600B
layout.txt 248d396f80da5e93c6f2a3c5324a830f 539B
evidence.txt fe4d232432a039cec9f8f10f71649f32 9B
Description:
The image contains an MBR partition table containing a primary and an extended
partition. The exact sector level layout is shown by layout.txt. The primary
partition contains a file evidence.txt with text “evidence”. The extended partition
points back to the MBR itself by having an offset of 0, thereby causing a loop.

To be used on:
Tools that read and analyse volume images (multiple partitions)

Obligatory behaviour:
Detect the primary partition and show the file evidence.txt in it

Ideal behaviour:
Detect loop
Scan disk image and ensure that nothing was missed when stopping
Show that the extended partition is in fact empty / non-existing
Warn user that the partition table looks unusual and show it

Alternatively allowed behaviour:
Do not show empty extended partition but log it somewhere
Stop processing after a certain time / partition count and warn user that not
everything might have been analysed
Show inconsistent size of occupied space and warn about that

Bad behaviour:
Show wrong error messages [p]
Show wrong size of occupied space without warning [c]
Crash / Become unresponsive [p]
Ignore evidence.txt [c]
Ignore primary partition [c]
Ignore extended partition [c]

93

FS_PC_MBR_2

file name md5 file size
FS_PC_MBR_2.dd 8bd8e5ef075fe377618a6038099aefb8 104 857 600B
layout.txt cc6e45a73b1786f0151431d71fff55ca 706B
evidence_1.txt c71b08d050f458e01fe0ea981d3fc1a5 11B
evidence_2.txt 55c5d4bebc55c35ed51a648bdc13cfb9 11B
evidence_3.txt a8dd0472fe2033ad2deb336320948a31 11B
evidence_4.txt 3d2a965500f4da0d940e5a6c2a410634 11B
evidence_5.txt 51a8867fe74098d7bb4dadfb817b5237 11B
Description:
The image contains an MBR partition table containing a primary and an extended
partition.The extended partition contains four logical partitions. The exact sec-
tor level layout is shown by layout.txt. The primary partition contains a file
evidence_1.txt with text “evidence_1”. Every logical partition contains a file evi-
dence_X.txt with text “evidence_X”, where X is ranging from 2 to 5. The EBR
locating the last logical partition contains an additional entry to an EBR with an
offset pointing back to the third partition record, thereby causing a loop.

To be used on:
Tools that read and analyse volume images (multiple partitions)

Obligatory behaviour:
Detect all five partitions and show the corresponding text file in every single one
of them

Ideal behaviour:
Detect loop
Scan disk image and ensure that nothing was missed when stopping
Warn user that the partition table looks unusual and show it

Alternatively allowed behaviour:
Stop processing after a certain time / partition count and warn user that not
everything might have been analysed
Show inconsistent size of occupied space and warn about that

Bad behaviour:
Show wrong error messages [p]
Show wrong size of occupied space without warning [c]
Crash / Become unresponsive [p]
Ignore any of the partitions or the text files within [c]

94 F Test Sets

FS_PC_MBR_3

file name md5 file size
FS_PC_MBR_3.dd 125a70d7db426b744ef9470b10ba1dae 5 368 709 120B
layout.txt ef457d019ef48dad5fc6bf4090c55468 9815B
evidence_md5.txt 7b9f2ce1fa93a5dd29f42bf779022f37 10 041B
Description:
The image contains an MBR partition table containing an extended partition. The
extended partition contains 199 logical partitions. The exact sector level layout
is shown by layout.txt. Every logical partition contains a file evidence_X.txt with
text “evidence_X”, where X is ranging from 1 to 199. The corresponding md5
checksums are listed in evidence_md5.txt.

To be used on:
Tools that read and analyse volume images (multiple partitions)

Obligatory behaviour:
Detect all 199 partitions and show the corresponding text file in every single one
of them

Ideal behaviour:
-

Alternatively allowed behaviour:
Stop processing after a certain partition count and warn user that not everything
might have been analysed
Show inconsistent size of occupied space and warn about that

Bad behaviour:
Show wrong error messages [p]
Show wrong size of occupied space without warning [c]
Crash / Become unresponsive [p]
Ignore any of the partitions or the text files within without warning the user [c]

95

FS_PC_MBR_4

file name md5 file size
FS_PC_MBR_4.dd cd5117dd7f383b56fc5a493e21324577 104 857 600B
layout.txt 25352fd6e2ecadbedb1efcb6fa7bf16a 686B
evidence_1.txt c71b08d050f458e01fe0ea981d3fc1a5 11B
evidence_2.txt 55c5d4bebc55c35ed51a648bdc13cfb9 11B
Description:
The image contains an MBR partition table containing two extended partitions.
Every extended partition contains a logical partition. The exact sector level
layout is shown by layout.txt. The first logical partition contains the file evi-
dence_1.txt with text “evidence_1”.The second logical partition contains the file
evidence_2.txt with text “evidence_2”.

To be used on:
Tools that read and analyse volume images (multiple partitions)

Obligatory behaviour:
Detect both logical partitions and show the corresponding text file in every single
one of them

Ideal behaviour:
Warn user that the partition table looks unusual and show it

Alternatively allowed behaviour:
Skip the second extended partition entry and warn user that not everything might
have been analysed
Show inconsistent size of occupied space and warn about that

Bad behaviour:
Show wrong error messages [p]
Show wrong size of occupied space without warning [c]
Ignore any of the partitions or the text files within without warning the user [c]

96 F Test Sets

FS_PC_MBR_5

file name md5 file size
FS_PC_MBR_5.dd 17769ea13e6902155d187db87749db2f 209 715 200B
layout.txt 15c66f3ee0a7d4ad883742e85cb7da8d 828B
evidence_1.txt c71b08d050f458e01fe0ea981d3fc1a5 11B
evidence_2.txt 55c5d4bebc55c35ed51a648bdc13cfb9 11B
evidence_3.txt a8dd0472fe2033ad2deb336320948a31 11B
evidence_4.txt 3d2a965500f4da0d940e5a6c2a410634 11B
Description:
The image contains an MBR partition table containing an extended partition.
The EBR of that partition points to a logical partition in its first entry and to
the next EBR in its second entry. The first EBR also contains a forbidden third
entry, pointing to a logical partition. The second EBR contains two entries to
logical partitions. The exact sector level layout is shown by layout.txt. All logical
partitions contain files named evidence_X.txt with text “evidence_X”, where X is
ranging from 1 to 4.

To be used on:
Tools that read and analyse volume images (multiple partitions)

Obligatory behaviour:
Detect all four logical partitions and show the corresponding text file in every
single one of them

Ideal behaviour:
Warn user that the partition table looks unusual and show it

Alternatively allowed behaviour:
Skip the second logical partition entry in every EBR and warn user that not
everything might have been analysed
Show inconsistent size of occupied space and warn about that

Bad behaviour:
Show wrong error messages [p]
Show wrong size of occupied space without warning [c]
Ignore any of the partitions or the text files within without warning the user [c]

97

FS_PC_GPT_1

file name md5 file size
FS_PC_GPT_1.dd 43e5af27cf7ce2bf497b667037beb2fc 104 857 600B
layout.txt 541aca9f1218414e01f238931b47f4ba 544B
layout_backup.txt 8dc9d5b73b2377e2a4eee74ed9380f78 713B
evidence_1.txt c71b08d050f458e01fe0ea981d3fc1a5 11B
evidence_2.txt 55c5d4bebc55c35ed51a648bdc13cfb9 11B
Description:
The image contains a GPT partition table containing two partitions. The exact
sector level layout is shown by layout.txt. The legacy partition table at the end
of the disk image does not match the primary one. It describes two different
partitions. The exact sector level layout of this partition table is shown by lay-
out_backup.txt. The first real partition contains a file evidence_1.txt with text
“evidence_1”. The second real partition contains a file evidence_2.txt with text
“evidence_2”.

To be used on:
Tools that read and analyse volume images (multiple partitions)

Obligatory behaviour:
Detect both actual partitions and show the corresponding text file in every single
one of them

Ideal behaviour:
Warn user that the primary and legacy GPT do not match and show both of them

Alternatively allowed behaviour:
Do not show active warning about GPT mismatch but log it somewhere
Refuse to analyse the disk image due to corrupt metadata

Bad behaviour:
Show wrong error messages [p]
Refuse to analyse the disk image without warning [p]
Ignore any of the partitions or the text files within without warning the user [c]

98 F Test Sets

FS_PC_GPT_2

file name md5 file size
FS_PC_GPT_2.dd a2bf6a9afe770c327862cdba95565683 5 368 709 120B
layout.txt f0bdf0e240fd8ac32f718a1c42b915c2 14 469B
evidence_md5.txt 7b9f2ce1fa93a5dd29f42bf779022f37 10 041B
Description:
The image contains a GPT partition table containing 199 partitions. The exact
sector level layout is shown by layout.txt. Every partition contains a file evi-
dence_X.txt with text “evidence_X”, where X is ranging from 1 to 199. The
corresponding md5 checksums are listed in evidence_md5.txt.

To be used on:
Tools that read and analyse volume images (multiple partitions)

Obligatory behaviour:
Detect all 199 partitions and show the corresponding text file in every single one
of them

Ideal behaviour:
-

Alternatively allowed behaviour:
Stop processing after a certain partition count and warn user that not everything
might have been analysed
Show inconsistent size of occupied space and warn about that

Bad behaviour:
Show wrong error messages [p]
Show wrong size of occupied space without warning [c]
Crash / Become unresponsive [p]
Ignore any of the partitions or the text files within without warning the user [c]

99

FS_PC_GPT_3

file name md5 file size
FS_PC_GPT_3.dd af5808bd946fd18ac6a835d87ef5e6f7 104 857 600B
layout.txt 15bb8bf3c663f19cd20754b0df15a0ef 43B
evidence_1.txt c71b08d050f458e01fe0ea981d3fc1a5 11B
evidence_2.txt 55c5d4bebc55c35ed51a648bdc13cfb9 11B
Description:
The image contains a GPT partition table containing two partitions. The exact
sector level layout is shown by layout.txt. The first partition contains a text file
evidence_1.txt with text “evidence_1”. The second partition contains a text file
evidence_2.txt with text “evidence_2”. The GPT is enclosed by a false protective
MBR. This MBR shows a wrong partition type for the GPT part of the image .It
also declares the GPT part only half as big as it really is.

To be used on:
Tools that read and analyse volume images (multiple partitions)

Obligatory behaviour:
Detect both actual partitions and show the corresponding text file in every single
one of them

Ideal behaviour:
Detect GPT partition and warn user that the protective MBR and the GPT
partition inside do not match
Ask whether to use MBR or GPT for disk analysis

Alternatively allowed behaviour:
Do not show active warning and use GPT struture for analysis, but log the mis-
match somewhere

Bad behaviour:
Show wrong error messages [p]
Decide automatically to use MBR without notification [c]
Decide automatically to use GPT without notification [p]
Ignore any of the partitions or the text files within without warning the user [c]

100 F Test Sets

FS_PC_GPT_4

file name md5 file size
FS_PC_GPT_4.dd 663c74824375a29298c38d840409ce63 104 857 600B
layout.txt 481eb0f363f5b3d1a3b8459c838e4d3c 542B
evidence_1.txt c71b08d050f458e01fe0ea981d3fc1a5 11B
evidence_2.txt 55c5d4bebc55c35ed51a648bdc13cfb9 11B
Description:
The image contains a GPT partition table containing two partitions. The ex-
act sector level layout is shown by layout.txt. The first partition contains a file
evidence_1.txt with text “evidence_1”. The second partition contains a file evi-
dence_2.txt with text “evidence_2”. The checksum of the primary GPT header
is not correct, but the backup one is intact.

To be used on:
Tools that read and analyse volume images (multiple partitions)

Obligatory behaviour:
Detect both partitions and show the corresponding text file in every single one of
them

Ideal behaviour:
Inform user that primary GPT header checksum is corrupt
Inform user that backup GPT header checksum is intact
Show both headers to user and ask which one should be used

Alternatively allowed behaviour:
Warn user that primary GPT header checksum is corrupt and use backup one for
disk analysis
Warn user that primary GPT header checksum is corrupt and ignore it for disk
analysis

Bad behaviour:
Show wrong error messages [p]
Give no warning about a corrupt header checksum [p]
Ignore the backup header entirely [c]
Ignore any of the partitions or the text files within without warning the user [c]

101

FS_PC_GPT_5

file name md5 file size
FS_PC_GPT_5.dd c3fce5181ff57605ac57e47e5e9b42e4 104 857 600B
layout.txt f82235d66d5791d3739baac4008ba7e3 542B
evidence_1.txt c71b08d050f458e01fe0ea981d3fc1a5 11B
evidence_2.txt 55c5d4bebc55c35ed51a648bdc13cfb9 11B
Description:
The image contains a GPT partition table containing two partitions. The ex-
act sector level layout is shown by layout.txt. The first partition contains a file
evidence_1.txt with text “evidence_1”. The second partition contains a file evi-
dence_2.txt with text “evidence_2”. The checksum of the GPT is corrupt, both
in the primary and in the backup header.

To be used on:
Tools that read and analyse volume images (multiple partitions)

Obligatory behaviour:
Detect both partitions and show the corresponding text file in every single one of
them

Ideal behaviour:
Inform user that primary GPT checksum is corrupt
Inform user that backup GPT checksum is corrupt
Warn user that analysis results could be incorrect due to corrupt metadata

Alternatively allowed behaviour:
Warn user that GPT checksum is corrupt and ignore it for disk analysis
Refuse analysis and warn user about corrupt disk metadata

Bad behaviour:
Show wrong error messages [p]
Give no warning about a corrupt GPT checksum [p]
Ignore the backup header entirely [c]
Ignore any of the partitions or the text files within without warning the user [c]

102 F Test Sets

OS_W_EDB_1

file name md5 file size
OS_W_EDB_1.edb 476020edf9a5d5e5519765fb4d36bf78 142 671 872B
Windows.edb d301e229392e7d91dc2ed71d01b2172a 142 671 872B
Description:
The test case is based on a real Windows.edb acquired from a Windows 7 machine.
The last_ObjID field in the database main header is manipulated and set to 0 to
simulate an empty database.

To be used on:
Tools that analyse Windows Search databases

Obligatory behaviour:
Show any information that can be read out using the original Windows.edb

Ideal behaviour:
Inform user that the database header incorrectly shows zero entries
Show user the relevant header field

Alternatively allowed behaviour:
Refuse to analyse the file and warn user that it might be corrupt

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore any information in the database [c]

103

OS_W_EDB_2

file name md5 file size
OS_W_EDB_2.edb 4dfba8219e169a06fd21c22635cd4944 142 671 872B
Windows.edb d301e229392e7d91dc2ed71d01b2172a 142 671 872B
Description:
The test case is based on a real Windows.edb acquired from a Windows 7 machine.
The space tree entry in database page 5 that describes database page 16 is changed.
It now specifies the childnode of page 16 to be page 16 itself. Additionally, the
nextPgno field in the header of page 16 is changed to 16.

To be used on:
Tools that analyse Windows Search databases

Obligatory behaviour:
Show any information that can be read out using the original Windows.edb

Ideal behaviour:
Detect loop
Warn the user that the space tree might be corrupt
Warn the user that the header of database page 16 looks corrupt
Show the unnormal parts of the file to the user

Alternatively allowed behaviour:
Stop processing after a certain time and warn user that not everything might have
been analysed
Refuse analysis and warn user that the file might be corrupt

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore any information in the database [c]
Produce output that contains much redundant information du to the loop [p]

104 F Test Sets

OS_W_EDB_3

file name md5 file size
No data associated, use radamsa
Description:
The test case is based on a real Windows.edb acquired from a Windows 7 machine.
Various fuzzed versions of it are created using the tool radamsa. The test can be
reproduced with any real world Windows Search database or even with artificially
created ones.

To be used on:
Tools that analyse Windows Search databases

Obligatory behaviour:
Show as much information of the original Windows.edb as possible

Ideal behaviour:
Warn user whenever a relevant part of the database might be corrupt
Show the unnormal parts of the file to the user

Alternatively allowed behaviour:
Stop processing after a certain time and warn user that not everything might have
been analysed
Refuse analysis and warn user that the file might be corrupt

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Produce wrong / incomplete output without warning the user about problems
during the analysis

105

OS_W_JL_1

file name md5 file size
OS_W_JL_1.autom... 115bb7ea1c478c4e11c7209025ebe17c 5120B
iexplore.autom... 2748ed629492103d43251668a4085df0 5120B
Description:
The test case contains a JumpList configuration of the Internet Explorer. The four
websites have been pinned to the JumpList. For exact information see the original
file iexplore.automaticDestinations-ms. One website entry has been changed to
google.de/ onmouseover=""alert(123456789)"". One entry has completely be
replaced by javascrip:alert(123456789).

To be used on:
Tools that analyse Windows 7 Jump List files and create an HTML report

Obligatory behaviour:
Show both changed website entries as they are, escaping the injection such that
it remains visible
Show the two unmodified domains facebook.com and microsoft.com

Ideal behaviour:
Warn user that an injection attempt has been detected

Alternatively allowed behaviour:
Remove dangerous characters from the output but inform the user about their
presence

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Remove the two malicious domains from the output, even only partially, without
a notification [c]
Ignore any of the other two domains [c]
Create an HTML report without escaping the injections [c]

106 F Test Sets

OS_W_JL_2

file name md5 file size
OS_W_JL_2.autom... f17c722979f4b0f3b3e9b3c3b66d95e3 5120B
iexplore.autom... 2748ed629492103d43251668a4085df0 5120B
Description:
The test case contains a JumpList configuration of the Internet Explorer. The four
websites have been pinned to the JumpList. For exact information see the original
file iexplore.automaticDestinations-ms. Several special characters often used for
separating CSV exports are injected into the website entries. Additionally, a
newline and a tabulator character, as well as a nullbyte are injected.

To be used on:
Tools that analyse Windows 7 Jump List files and optionally create a formatted
export

Obligatory behaviour:
Show all four website entries as they are, escaping the injecton such that it remains
visible

Ideal behaviour:
Warn user that an injection attempt has been detected

Alternatively allowed behaviour:
Remove dangerous characters from the output but inform the user about their
presence

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Interpret the newline or tabulator character [p]
Remove any dangerous character from the output without notification [c]
Interpret the nullbyte as termination of a string literal [c]
Create a CSV export without escaping the special characters used for delimitation
of entries [c]

107

OS_W_JL_3

file name md5 file size
No data associated, use radamsa
Description:
The test case is based on real world JumpList files acquired from Windows ma-
chines. Various fuzzed versions of them are created using the tool radamsa. The
test can be reproduced with any real world JumpList or even with artificially
created ones.

To be used on:
Tools that analyse Windows 7 Jump List files

Obligatory behaviour:
Show as much information of the original JumpList files as possible

Ideal behaviour:
Warn user whenever a relevant part of the JumpList might be corrupt
Show the unnormal parts of the file to the user

Alternatively allowed behaviour:
Stop processing after a certain time and warn user that not everything might have
been analysed
Refuse analysis and warn user that the file might be corrupt

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Produce wrong / incomplete output without warning the user about problems
during the analysis [c]

108 F Test Sets

OS_W_EVTX_1

file name md5 file size
OS_W_EVTX_1.evtx 4ef33ef47ab2ccff997b7c8f2eae8001 69 632B
small_System.evtx ec87f1b41f27e1ef79d3c4a56716ceaa 69 632B
Description:
The test case is based on the logfile small_System.evtx with about 90 entries,
acquired from a Windows 7 machine. The fields first event record number and
last event record number are swapped in the chunk header of the file. The chunk
header checksum is adjusted.

To be used on:
Tools that analyse Windows XML Event Logs

Obligatory behaviour:
Show any information that can be read out using the original small_System.evtx

Ideal behaviour:
Warn user that the record numbers might be incorrect
Ask the user what numbers are to be used, possibly making proposals based on
the data found in the file

Alternatively allowed behaviour:
Refuse to analyse the file and warn user that it might be corrupt

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore the incorrect chunk header values while correctly reading the rest of the
data [p]
Ignore any event record [c]

109

OS_W_EVTX_2

file name md5 file size
OS_W_EVTX_2.evtx a9ff0bdb071ee59fd70e4e2321b276eb 69 632B
small_System.evtx ec87f1b41f27e1ef79d3c4a56716ceaa 69 632B
Description:
The test case is based on the logfile small_System.evtx with about 90 en-
tries, acquired from a Windows 7 machine. At the beginning of the file, "ls
attr=’asd’ /> is injected into the xmlns attribute. In record 9, the string
<script>alert(1)</script>\00\00 is injected. In record 10, a newline char-
acter is injected. In record 11, a tabulator character is injected.

To be used on:
Tools that analyse Windows XML Event Logs and optionally create a formatted
export

Obligatory behaviour:
Show any information that can be read out using the original small_System.evtx
Show the manipulated records as they are, escaping the injection such that it
remains visible

Ideal behaviour:
Warn user that an injection attempt has been detected

Alternatively allowed behaviour:
Remove dangerous characters from the output but inform the user about their
presence

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Interpret the newline or tabulator character [p]
Remove any dangerous character from the output without notification [c]
Interpret the nullbyte as termination of a string literal [c]
Create a CSV export without escaping the special characters used for delimitation
of entries [c]
Create an HTML report without escaping the injections [c]

110 F Test Sets

OS_W_EVTX_3

file name md5 file size
No data associated, use radamsa
Description:
The test case is based on real world XML event logfiles acquired from Windows
machines. Various fuzzed versions of them are created using the tool radamsa.
The test can be reproduced with any real world evtx-file or even with artificially
created ones.

To be used on:
Tools that analyse Windows XML Event Logs

Obligatory behaviour:
Show as much information of the original evtx-files as possible

Ideal behaviour:
Warn user whenever a relevant part of the logfile might be corrupt
Show the unnormal parts of the file to the user

Alternatively allowed behaviour:
Stop processing after a certain time and warn user that not everything might have
been analysed
Refuse analysis and warn user that the file might be corrupt

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Produce wrong / incomplete output without warning the user about problems
during the analysis [c]

111

OS_W_REG_1

file name md5 file size
OS_W_REG_1.DAT 4d927ae980050fcbb25dc3e7996e80ed 786 432B
NTUSER.DAT 02f25912300df8e5bac0720c89a1197c 786 432B
Description:
The test case is based on a real NTUSER.DAT registry file acquired from a
Windows 7 machine. The subkey list of the first name key entry in the file,
specifying the registry hive root, is modified to contain a name key entry that
points back to the root name key, thereby causing a loop.

To be used on:
Tools that analyse Windows Registry Files

Obligatory behaviour:
Show any information that can be read out using the original NTUSER.DAT

Ideal behaviour:
Detect loop
Scan file and show the remaining registry keys

Alternatively allowed behaviour:
Stop processing after a certain time and warn user that not everything might have
been analysed

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore any information in the registry file [c]

112 F Test Sets

OS_W_REG_2

file name md5 file size
OS_W_REG_2.DAT d93e5250f5dbeedd9e7a260a63bcfb9c 786 432B
NTUSER.DAT 02f25912300df8e5bac0720c89a1197c 786 432B
Description:
The test case is based on a real NTUSER.DAT registry file acquired from a
Windows 7 machine. The first name key entry in the file, specifying the registry
hive root, is modified to contain the value 37 in its number_of_subkeys field but
it really has only 11 subkeys. The number_of_entries field in the subkey list is
also changed from 11 to 37.

To be used on:
Tools that analyse Windows Registry Files

Obligatory behaviour:
Show any information that can be read out using the original NTUSER.DAT

Ideal behaviour:
Warn user that unreadable / misformatted entries were found while parsing the
subkey list

Alternatively allowed behaviour:
Show unreadable / misformatted registry entries but notify user about the unex-
pected format

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore any information in the registry file [c]
Show unreadable / misformatted registry entries without notification [p]

113

OS_W_REG_3

file name md5 file size
OS_W_REG_3.DAT 04bcae7958a4a354ba8f5305a56284f3 786 432B
NTUSER.DAT 02f25912300df8e5bac0720c89a1197c 786 432B
Description:
The test case is based on a real NTUSER.DAT registry file acquired from a
Windows 7 machine. Various injections are made in existing values. The sCountry
key is manipulated with various CSV delimiter characters. The Username key
is manipulated with an HTML comment. The sLongDate key is manipulated
with a tabulator character. The sNativeDigits key is manipulated with a newline
character. The sTimeFormat key is manipulated with a nullbyte.

To be used on:
Tools that analyse Windows Registry Files and optionally create a formatted
export

Obligatory behaviour:
Show any information that can be read out using the original NTUSER.DAT
Show the manipuated entries as they are, escaping the injection such that it
remains visible

Ideal behaviour:
Warn user that an injection attempt has been detected
Warn user that unlikely characters are present in some registry keys

Alternatively allowed behaviour:
Remove dangerous characters from the output but inform the user about their
presence

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Interpret the newline or tabulator character [p]
Remove any dangerous character from the output without notification [c]
Interpret the nullbyte as termination of a string literal [c]
Create a CSV export without escaping the special characters used for delimitation
of entries [c]
Create an HTML report without escaping the injections [c]

114 F Test Sets

OS_W_REG_4

file name md5 file size
No data associated, use radamsa
Description:
The test case is based on real world registry files acquired fromWindows machines.
Various fuzzed versions of them are created using the tool radamsa. The test can
be reproduced with any real world registry file or even with artificially created
ones.

To be used on:
Tools that analyse Windows Registry Files

Obligatory behaviour:
Show as much information of the original registry files as possible

Ideal behaviour:
Warn user whenever a relevant part of the registry file might be corrupt
Show the unnormal parts of the file to the user

Alternatively allowed behaviour:
Stop processing after a certain time and warn user that not everything might have
been analysed
Refuse analysis and warn user that the file might be corrupt

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Produce wrong / incomplete output without warning the user about problems
during the analysis [c]

115

OS_M_SLDB_1

file name md5 file size
OS_M_SLDB_1.db ba623eac2570543f03784c687bba2490 118 784B
Description:
The test case contains a Spotlight database of a USB drive indexed by Mac OS X
10.8 (Spotlight DB v2). The drive contained a file “<script>alert(1)</script>”
and a folder “<script>alert(1)<” with a file script> in it. Additionally, three
folders called “,”, “;” and “|” were on the drive when it was indexed.

To be used on:
Tools that analyse Macintosh Spotlight databases and create a formatted export

Obligatory behaviour:
Show the folder structure of the USB stick as it is, escaping the injection such
that it remains visible

Ideal behaviour:
Warn user that an injection attempt has been detected

Alternatively allowed behaviour:
Remove dangerous characters from the output but inform the user about their
presence

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Remove any dangerous character from the output without notification [c]
Create a CSV export without escaping the special characters used for delimitation
of entries [c]
Create an HTML report without escaping the injections [c]

116 F Test Sets

OS_M_SLDB_2

file name md5 file size
No data associated, use radamsa
Description:
The test case is based on real world Spotlight database files. Various fuzzed
versions of them are created using the tool radamsa. The test can be reproduced
with any real world registry file or even with artificially created ones.

To be used on:
Tools that analyse Macintosh Spotlight databases

Obligatory behaviour:
Show as much information of the original Spotlight database files as possible

Ideal behaviour:
Warn user whenever a relevant part of the database might be corrupt
Show the unnormal parts of the file to the user

Alternatively allowed behaviour:
Stop processing after a certain time and warn user that not everything might have
been analysed
Refuse analysis and warn user that the file might be corrupt

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Produce wrong / incomplete output without warning the user about problems
during the analysis [c]

117

OS_M_BPL_1

file name md5 file size
OS_M_BPL_1_BIN.plist 634314bb920287b16957f17e4dc33a68 42B
OS_M_BPL_1_XML.plist bbdf3432377888e136bc12d76a24dc2d 29B
Description:
The test case consists of a handcrafted file that is the most minimal plist possible.
The file contains a “<plist>” xml element with a “<true/>” xml element inside.

To be used on:
Tools that analyse Macintosh property lists in XML or binary format

Obligatory behaviour:
Show the contents of the file, in this case a single true element, as well as metadata

Ideal behaviour:
Warn user that the plist file does not conform to the usual structure

Alternatively allowed behaviour:
Refuse to analyse the file and warn user that it might be corrupt

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore any information in the file [c]
Ignore the missing header structure without notification [p]

118 F Test Sets

OS_M_BPL_2

file name md5 file size
OS_M_BPL_2_BIN.plist 37af33ae905a787537a37bda3d6a0b50 1132B
OS_M_BPL_2_XML.plist 43286407df064b194faba4457a3eaade 270 201B
Description:
The test case consists of a handcrafted file that is very deeply nested. The
file contains about 200 levels of nested “<dict>” xml elements with the element
“<string>This is a dummy string</string>” in the deepest level.

To be used on:
Tools that analyse Macintosh property lists in XML or binary format

Obligatory behaviour:
Show the contents of the file, most importantly the dummy string, as well as
metadata

Ideal behaviour:
Warn user about deeply nested xml elements that could reduce the performance

Alternatively allowed behaviour:
Stop processing after a certain time / level of elements and warn user that not
everything might have been analysed

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore any information in the file [c]

119

OS_M_BPL_3

file name md5 file size
OS_M_BPL_3_XML.plist 843dfa89624d914aa9c1dd6be1ccf457 16 878B
com.apple.recentitems.plist 1eab903ef65bb34ac590c65e228fb5f9 9565B
recentitems_xml.plist c8c3d381ef1afaf4d3d6663599ac0469 16 900B
Description:
The test case is based on a real recentitems.plist file acquired from a Mac
OS X 10.6 machine. The first “string” element normally containing the URL
of a recently used server is filled with a string that is not a URL. An ele-
ment “<true>Not so true</true>” is injected into the XML structure. An
“<integer>” XML tag is filled with text instead of a number. An element
“<real>asd_not_a_number</real>” is injected into the XML structure. An
element “<string>Name</string>” is injected into a “<key>” XML element. An
element “<integer><true/></integer>” is injected into the XML structure.

To be used on:
Tools that analyse Macintosh property lists in XML or binary format

Obligatory behaviour:
Show the contents of the file
Show every corrupt part of the file

Ideal behaviour:
Warn user that the plist file is corrupt

Alternatively allowed behaviour:
Stop processing after a certain time and warn user that not everything might have
been analysed

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore any information in the file [c]
Fix the corruption without notification of the user [c]

120 F Test Sets

OS_M_BPL_4

file name md5 file size
No data associated, use radamsa
Description:
The test case is based on real plist files acquired from Mac OS X machines.
Various fuzzed versions of them are created using the tool radamsa.The test can
be reproduced with any real world registry file or even with artificially created
ones.

To be used on:
Tools that analyse Macintosh property lists in XML or binary format

Obligatory behaviour:
Show as much information of the original plist files as possible

Ideal behaviour:
Warn user whenever a relevant part of the plist might be corrupt
Show the unnormal parts of the file to the user

Alternatively allowed behaviour:
Stop processing after a certain time and warn user that not everything might have
been analysed
Refuse analysis and warn user that the file might be corrupt

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Produce wrong / incomplete output without warning the user about problems
during the analysis [c]

121

OS_M_LOG_1

file name md5 file size
OS_M_LOG_1.log 65d3815d53456e1c3caa28a9584d46d6 28 718B
system.log 09a6348d86f1cab3eeb13fbc70c30e87 29 215B
Description:
The test case is based on a real system.log file acquired from a Mac OS X 10.6
machine. Various entries have been reformatted such that the syntax of a single
entry was changed. The entries in the file are reordered to break the temporal
ascending display of events. For exact differences compare the original system.log
to the version provided as OS_M_LOG_1.log.

To be used on:
Tools that analyse Macintosh system.log files

Obligatory behaviour:
Show all entries in the logfile as they are

Ideal behaviour:
Warn user that the syntax of an entry is not intact
Warn user that the entries are not in temporal order

Alternatively allowed behaviour:
Stop processing after a misformatted entry and warn user that the file might be
corrupt

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Automatically reorder the entries without notification [c]
Ignore the misformatted entries without notification of the user [c]

122 F Test Sets

OS_M_LOG_2

file name md5 file size
OS_M_LOG_2.log 9ad89405ce6940e32e903952ba585844 29 395B
system.log 09a6348d86f1cab3eeb13fbc70c30e87 29 215B
Description:
The test case is based on a real system.log file acquired from a Mac OS X 10.6
machine. Various lines have been inserted into the text, forming the sentences
“This is another text to see what happens if random text is inserted somewhere
in the file.”, “Random text in between lines” and “Random text at the end!”.
Addtionally, many newlines have been inserted, thereby producing empty lines in
the logfile.

To be used on:
Tools that analyse Macintosh system.log files

Obligatory behaviour:
Show all entries in the logfile as they are

Ideal behaviour:
Warn user that the entry syntax is not correct
Show the unnormal lines and thereby reveal the hidden message

Alternatively allowed behaviour:
Stop processing after a misformatted entry and warn user that the file might be
corrupt

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore the misformatted entries without notification of the user [c]

123

OS_M_LOG_3

file name md5 file size
OS_M_LOG_3.log 17dc95f76d55a330db5271bd6b5ef2f9 29 223B
system.log 09a6348d86f1cab3eeb13fbc70c30e87 29 215B
Description:
The test case is based on a real system.log file acquired from a Mac OS X 10.6
machine. The characters “;,|!?*""’ ”, tabulator, newline and nullbyte have been
injected in the file at line 100.

To be used on:
Tools that analyse Macintosh system.log files and optionally create a formatted
export

Obligatory behaviour:
Show all entries in the logfile as they are, escaping the injection such that it
remains visible

Ideal behaviour:
Warn user that an injection attempt has been detected

Alternatively allowed behaviour:
Stop processing after reaching an unexpected character and warn user that the
file might be corrupt
Interpret all special characters as long as the output is complete
Remove dangerous characters from the output but inform the user about their
presence

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore any information in the logfile [c]
Create a CSV export without escaping the special characters used for delimitation
of entries [c]

124 F Test Sets

OS_L_MLDB_1

file name md5 file size
OS_L_MLDB_1.db 1f0089d7400eef60afe7cb479c26cf79 6 450 487B
mlocate.db 50c589900d90ee927f3fbce4329b6cdf 6 450 487B
Description:
The test case is based on a real mlocate database acquired from a Kali Linux 1.0.5
machine. The nanoseconds of the creation_time field in the database header are
changed to 0xFFFFFFFF.

To be used on:
Tools that analyse Linux mlocate databases

Obligatory behaviour:
Show any information that can be read out using the original mlocate database

Ideal behaviour:
Warn user that the nanoseconds entry contains invalid information
Show the value of the entry to the user

Alternatively allowed behaviour:
Refuse to analyse the file and warn user that it might be corrupt

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore the wrong nanoseconds field without notification [c]
Ignore any information in the file [c]

125

OS_L_MLDB_2

file name md5 file size
OS_L_MLDB_2.db 81bc8b9b4855e1443fa305f88b704385 6 450 487B
mlocate.db 50c589900d90ee927f3fbce4329b6cdf 6 450 487B
Description:
The test case is based on a real mlocate database acquired from a Kali Linux 1.0.5
machine. The byte 0x02 indicating the end of the root directory is changed to
0x00.

To be used on:
Tools that analyse Linux mlocate databases

Obligatory behaviour:
Show any information that can be read out using the original mlocate database

Ideal behaviour:
Warn user that more data than belonging to the directory could have been read
Show user the relevant part of the file

Alternatively allowed behaviour:
Stop processing after reaching the corrupt directory end and warn user that the
file might be corrupt

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore any information in the file [c]

126 F Test Sets

OS_L_MLDB_3

file name md5 file size
OS_L_MLDB_3.db 822f9112e2a4e7bb769a4bb393ae9a47 6 450 487B
mlocate.db 50c589900d90ee927f3fbce4329b6cdf 6 450 487B
Description:
The test case is based on a real mlocate database acquired from a Kali Linux
1.0.5 machine. Various unexisting delimiters are injected. In the /bin directory, a
delimiter 0x03 is injected. In the /boot directory, a delimiter 0x04 is injected. In
the /dev directory, a delimiter 0x10 is injected. In the /etc directory, a delimiter
0xFF is injected.

To be used on:
Tools that analyse Linux mlocate databases

Obligatory behaviour:
Show any information that can be read out using the original mlocate database

Ideal behaviour:
Warn user that unknown delimiters have been found
Show user the relevant part of the file

Alternatively allowed behaviour:
Stop processing after reaching an unexpected delimiter and warn user that the file
might be corrupt

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore any information in the file [c]
Fix the wrong delimiters without notification [c]

127

OS_L_BH_1

file name md5 file size
OS_L_BH_1 9c093fea1e2f432fe149b1957f55ba69 7267B
bash_history 68961063ce69d1ad41cd1023967fef5a 7407B
Description:
The test case is based on a real .bash_history file acquired from a Kali Linux
1.0.5 machine. In the middle of the file, 10 consecutive newlines are injected.
In the first line, tabulators are injected around the &&. In the second line
various non-printable characters are injected. In the third line, the string
“<script>alert(1)</script>” is injected. In the fourth line, the characters “+;:|,.”
are injected.

To be used on:
Tools that analyse Linux bash history files and optionally create a formatted
export

Obligatory behaviour:
Show all entries in the history file as they are, escaping the injection in a way that
it remains visible

Ideal behaviour:
Warn user that an injection attempt has been detected

Alternatively allowed behaviour:
Stop processing after reaching an unexpected character and warn user that the
file might be corrupt
Remove dangerous characters from the output but inform the user about their
presence

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore any information in the file [c]
Create a CSV export without escaping the special characters used for delimitation
of entries [c]
Create an HTML report without escaping the injections [c]
Remove any dangerous character from the output without notification [c]

128 F Test Sets

UF_MM_PIC_1

file name md5 file size
UF_MM_PIC_1a.gif 8c320ca6fbcb40f32dc53e0b3a47a541 12 137B
UF_MM_PIC_1b.png ad3edf512705938c7c5c6453603cea55 163 675B
UF_MM_PIC_1c.tiff 04c56f1a78b8fae1bc924e5f2cf9afd7 26 251B
original.gif d7bd270d9fae6235ef7d12257af2fecd 12 137B
original.png e5a116db3fd38d17b8277437b9a3c6d0 163 675B
original.tiff 65cf94ef413cc934faa83ee4c81e3c12 26 251B
Description:
The test case consists of three picture files in the formats gif, png and tiff. In
every of these files, the resolution information has been changed to show only the
upper half of the respective picture. The original information is still present inside
the files.

To be used on:
Tools that analyse and display pictures in at least one of the formats gif, png or
tiff

Obligatory behaviour:
Show all pixels of the pictures

Ideal behaviour:
Warn user that the header contains wrong information about the image size
Propose alternative image height that use all data present in the file (width cannot
be changed without corrupting the displayed image part)

Alternatively allowed behaviour:
Warn user that more data than displayed is present
Refuse to display the image and warn user about a size corruption

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Automatically display the whole image without notification [p]
Ignore the hidden part of the image [c]

129

UF_MM_PIC_2

file name md5 file size
UF_MM_PIC_2.gif 0840e6f95c8ceb85e452213a573c4552 1 052 095B
original.gif 62c7cfb5bf544a122cf720b8939e7e55 1 052 095B
Description:
The test case is based on a publicly available animated gif image [Mar]. The
display time of the first frame is increased to more than 10 seconds to mimic a
static picture when not looking long enough.

To be used on:
Tools that analyse and display gif pictures

Obligatory behaviour:
Indicate that the picture is animated
Show the animation

Ideal behaviour:
Show every frame of the image separately
Show detailed information about the display time of every frame

Alternatively allowed behaviour:
Inform user that the picture is animated and warn that this feature is not sup-
ported

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Automatically display the animated picture in a single frame without notification
[p]
Ignore the hidden part of the image [c]

130 F Test Sets

UF_MM_PIC_3

file name md5 file size
UF_MM_PIC_3.png 1a87fb983e7a4ff28752009840d7895a 163 770B
original.png e5a116db3fd38d17b8277437b9a3c6d0 163 675B
Description:
The test case is based on a picture found via an online search for png files [Anob].
The regular meta tag comment is added to the picture. It contains the string
“<script>alert(1)</script>”. An additional text chunk with meta tag value ad-
ditionalComment is added at the end of the file. It contains the string “hidden
text;,.:""’|”, followed by a tabulator and a newline character.

To be used on:
Tools that analyse png pictures and optionally create a formatted export

Obligatory behaviour:
Show all text chunks present in the picture file, escaping the injection such that
it remains visible

Ideal behaviour:
Warn user that an injection attempt has been detected

Alternatively allowed behaviour:
Stop processing after reaching an unexpected character and warn user that not
everything has been analysed
Remove dangerous characters from the output but inform the user about their
presence

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Interpret the newline or tabulator character [p]
Remove any dangerous character from the output without notification [c]
Create a CSV export without escaping the special characters used for delimitation
of entries [c]
Create an HTML report without escaping the javascript injection [c]

131

UF_MM_PIC_4

file name md5 file size
UF_MM_PIC_4.tiff 65cf94ef413cc934faa83ee4c81e3c12 26 251B
Description:
The test case contains a regular tiff file found on the internet, more precisely in
a now deleted thread inside the Apple developer forum. It uses the uncommen
method of packing multiple pictures in a single tiff file using multiple ifd entries.
The file contains two pictures showing the texts front and bottom.

To be used on:
Tools that analyse and display tiff pictures

Obligatory behaviour:
Show both pictures contained in the file

Ideal behaviour:
-

Alternatively allowed behaviour:
Warn user that only a basic set of functions is supported when looking at tiff files
Warn user that additional information is present in the file that it does not un-
derstand

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore the second picture in the file without notification [c]

132 F Test Sets

UF_MM_PIC_5

file name md5 file size
UF_MM_PIC_5.tiff a586de2696ed369bbb3d46569616cf9d 26 251B
original.tiff 65cf94ef413cc934faa83ee4c81e3c12 26 251B
Description:
The test case is based on the regular tiff file used in test case UF_MM_PIC_4.
Instead of correctly pointing to the next ifd structure in the file, the offset value
in the first ifd points back to itself, thereby causing a loop.

To be used on:
Tools that analyse tiff pictures

Obligatory behaviour:
Show both pictures contained in the file

Ideal behaviour:
Detect loop
Scan file and show the second ifd

Alternatively allowed behaviour:
Warn user that only a basic set of functions is supported when looking at tiff files
Stop processing after a certain amount of time and warn user that not everything
might have been processed

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore the second picture in the file without notification [c]
Ignore the loop without notifying the user about it [p]

133

UF_MM_A_1

file name md5 file size
No data associated, use radamsa
Description:
The test case is based on multiple files in different audio formats. To conduct
this test, sample music has to be collected independently. After gathering a broad
range of different files, fuzzed versions are created with the tool radamsa.

To be used on:
Tools that analyse metadata of the chosen audio formats and optionally play the
files

Obligatory behaviour:
Show any information that remains in the audio files after the fuzzing (sound,
meta tags)

Ideal behaviour:
Warn user whenever a relevant part of the audio files might be corrupt
Show the unnormal parts of the file to the user

Alternatively allowed behaviour:
Stop processing after a certain amount of time / after reaching a corrupt part in
the file and warn user that not everything might have been analysed
Refuse to start the analysis

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Produce wrong / incomplete output without warning the user about problems
during the analysis [c]

134 F Test Sets

UF_MM_V_1

file name md5 file size
No data associated, use radamsa
Description:
The test case is based on multiple files in different video formats. To conduct this
test, sample videos have to be collected independently. After gathering a broad
range of different files, fuzzed versions are created with the tool radamsa.

To be used on:
Tools that analyse metadata of the chosen video formats and optionally play the
files

Obligatory behaviour:
Show any information that remains in the video files after the fuzzing (video,
sound, meta tags)

Ideal behaviour:
Warn user whenever a relevant part of the video files might be corrupt
Show the unnormal parts of the file to the user

Alternatively allowed behaviour:
Stop processing after a certain amount of time / after reaching a corrupt part in
the file and warn user that not everything might have been analysed
Refuse to start the analysis

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Produce wrong / incomplete output without warning the user about problems
during the analysis [c]

135

UF_OF_ODF_1

file name md5 file size
UF_OF_ODF_1.odt ed3b235913e04cc7d505b2c83831d46f 8907B
Description:
The test case uses the conditional text feature of the open document file format.
A trigger variable is connected with the text “The secret key to my hacker ad-
min panel is admin:admin”. If the trigger is equal to “True” the text is shown.
Otherwise it is hidden.

To be used on:
Tools that analyse Open Document text files

Obligatory behaviour:
Show the normal content of the file
Show the hidden text
Show the value of the normally invisible trigger variable

Ideal behaviour:
Highlight the text to mark it as hidden

Alternatively allowed behaviour:
Warn user that an open document feature is used that is not supported
Inform user that some of the displayed text would normally be hidden without
marking it directly

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Automatically display the hidden text without notification [p]
Ignore the hidden text inside the file[c]

136 F Test Sets

UF_OF_ODF_2

file name md5 file size
UF_OF_ODF_2.odt 2c3354aceabd25eaa8957fbcbf299c52 65 523B
Description:
The test case uses the floating frame feature of the open document file format.
Multiple frames are inserted in a text file containing lorem ipsum text. The source
of the displayed document inside the floating frames is manipulated in the XML
structure of the file. It points back to itself, thereby causing a loop.

To be used on:
Tools that analyse Open Document text files

Obligatory behaviour:
Show the normal content of the file
Show the embedded floating frame
Show the document source of the floating frame

Ideal behaviour:
Detect loop

Alternatively allowed behaviour:
Warn user that an open document feature is used that is not supported
Stop the processing after a certain amount of time, warning the user that not
everything might have been analysed

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore any information in the file[c]

137

UF_OF_ODF_3

file name md5 file size
UF_OF_ODF_3.odt 7bc408ec059a3e05449e1880e3c94276 678 173B
hidden.jpg 4f65dea50ea8cd30a7f98698d843091d 87 113B
Description:
The test case is based on a document created with Libre Office. The document
is unpacked and an additional picture is added to the picture folder, which is not
embedded in the document directly. The picture is also added to the list of files
in manifest.xml. The document is repacked to look like a unsuspicious odt file.

To be used on:
Tools that analyse Open Document text files

Obligatory behaviour:
Show the normal content of the file
Detect the hidden picture and show it

Ideal behaviour:
Show the hidden picture
List every file inside the Open Document container file
Warn user that unreferenced files are present in the document

Alternatively allowed behaviour:
Detect the hidden picture and notify the user without directly showing it
Warn user that the file is manipulated and refuse to process it

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore the hidden picture [c]

138 F Test Sets

UF_OF_ODF_4

file name md5 file size
UF_OF_ODF_4.odt b74722a07ca2e0d4f61b6d92679f1a46 19 002B
Description:
The test case consists of a benign odt file created with Libre Office. A picture is
embedded that, when viewed, is directly loaded from the internet [Goo13].

To be used on:
Tools that analyse Open Document text files and are installed on a computer with
internet access

Obligatory behaviour:
Show the normal content of the file
Show that an internet picture is embedded without loading it
Show the link to the picture

Ideal behaviour:
Warn user that the file tries to download data from the internet
Show user a link to the image to open in an external browser

Alternatively allowed behaviour:
Warn user that an internet picture is embedded without directly presenting the
link
Ask the user whether the connection should be established (discouraged be-
haviour!)

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Establish the internet connection without asking for user interaction [c]

139

UF_OF_MSO_1

file name md5 file size
No data associated, use radamsa
Description:
The test case is based on multiple files in different Microsoft office formats (old
doc, xls etc. format). To conduct this test, sample documents have to be collected
independently. After gathering a broad range of different files, fuzzed versions are
created with the tool radamsa.

To be used on:
Tools that analyse Microsoft Office documents in the old format

Obligatory behaviour:
Show any information that remains in the documents after the fuzzing (text,
embedded objects, meta information, . . .)

Ideal behaviour:
Warn user whenever a relevant part of the document might be corrupt
Show the unnormal parts of the file to the user

Alternatively allowed behaviour:
Stop processing after a certain amount of time / after reaching a corrupt part in
the file and warn user that not everything might have been analysed
Refuse to start the analysis

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Produce wrong / incomplete output without warning the user about problems
during the analysis [c]

140 F Test Sets

UF_OF_M_1

file name md5 file size
UF_OF_M_1.mbox 27e434092205cf2e71d0e80989246be2 80 314B
original.mbox cb93437bf980634e1d088332eb7b754d 80 254B
Description:
The test case is based on a real world mbox file that has been created by converting
a pst file that is part of the Enron email data set [Coh09] with libpst. The typical
structure of mbox files is broken by inserting many newlines at various positions
in the file.

To be used on:
Tools that analyse mbox email containers

Obligatory behaviour:
Show all messages contained in the mbox file

Ideal behaviour:
Warn user about an unusual file structure

Alternatively allowed behaviour:
Stop processing after reaching a newline and warn user that not everything might
have been analysed due to an unexpected format

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore any information in the file [c]
Ignore the newlines without notification [p]

141

UF_OF_M_2

file name md5 file size
UF_OF_M_2.eml 2e8870a3d86d1091eb376a324218e895 617 110B
original.eml 1d91a8315a65e89d4556d1a7b9fa5adf 617 153B
Description:
The test case is based on a real world eml file. In the To: header line the string
“<script>alert(1)</script>” is injected. In the CC: header line, a HTML com-
ment is injected, commenting out the first additional recipient of the message,
“<Diane.Anderson@ENRON.com>”.

To be used on:
Tools that analyse eml files and create a formatted HTML export

Obligatory behaviour:
Show all information present in the file, escaping the injection such that it remains
visible

Ideal behaviour:
Warn user that an injection attempt has been detected

Alternatively allowed behaviour:
Stop processing after reaching an unexpected character and warn user that not
everything has been analysed
Remove dangerous characters from the output but inform the user about their
presence

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Remove any dangerous character from the output without notification [c]
Create an HTML report without escaping the javascript injection [c]

142 F Test Sets

UF_OF_M_3

file name md5 file size
UF_OF_M_3.emlx ffa17b4903c944243b2accfad0f9c756 1195B
original.emlx 984978c7c895cd8be9e5829d8d6684a1 1195B
Description:
The test case is based on a real world emlx file. The first characters in the file,
normally containing the message size in bytes, are changed to represent a bigger
message than actual.l (765B vs. 739B).

To be used on:
Tools that analyse emlx files

Obligatory behaviour:
Show all information present in the file

Ideal behaviour:
Inform user about the wrong bytesize

Alternatively allowed behaviour:
Refuse to analyse the file and warn user that it might be corrupt

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore any information in the file [c]
Ignore the wrong header size and display the file correctly without notification [p]

143

UF_OF_M_4

file name md5 file size
UF_OF_M_4.emlx 2e613bbe75206062f3e57f1998edfadf 3086B
original.emlx 984978c7c895cd8be9e5829d8d6684a1 1195B
Description:
The test case is based on a real world emlx file. The XML structure at the
end of the file, containing meta information, is manipulated. The dtd document
describing the internal XML structure is embedded instead of being referred to
as a URI. The dtd is then modified to create a huge amount of data when being
parsed. Therefore, entities are defined that include each other recursively for 12
levels, resulting in about 3TB of data.

To be used on:
Tools that analyse the metadata plist embedded in emlx files

Obligatory behaviour:
Show all information present in the file

Ideal behaviour:
Detect XML bomb attempt
Warn user about an unusually embedded dtd file

Alternatively allowed behaviour:
Refuse to analyse the file and warn user that an unexpected inline dtd file is
present
Stop processing after a certain amount of time or used disk space and warn user
that not everything might have been analysed

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Escape the XML bomb without notification [p]
Ignore any information inside the file [c]

144 F Test Sets

UF_OF_M_5

file name md5 file size
UF_OF_M_5.pst 7eb431fd900e2ecedd40863c99264b80 26 428 416B
original.pst 21c079f7c43daf7e42a1528e287a0ff2 26 428 416B
Description:
The test case is based on a real world pst file. The inner tree structure is modified,
such that nodes of the tree point back to themselves, thereby causing a loop.

To be used on:
Tools that analyse pst email containers

Obligatory behaviour:
Show all information present in the file

Ideal behaviour:
Detect loop

Alternatively allowed behaviour:
Stop processing after a certain amount of time and warn user that not everything
might have been analysed

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Escape the loop without notification [p]
Ignore any information inside the file [c]

145

UF_V_CB_1

file name md5 file size
UF_V_CB_1.png 518602a9c69ff638320e3f0d6a943344 44 024B
Description:
The test case consists of a picture crafted by AERAsec Network Services and Se-
curity GmbH [AER09]. It contains the picture information of a monochrome red
pixel and deflates to 361 megapixels when viewed. It therefore uses the compres-
sion capabilities of the png file format.

To be used on:
Tools that analyse and display png pictures

Obligatory behaviour:
Show the contents of the file

Ideal behaviour:
Detect the heavy decompression ratio
Ask user whether or not he wants to continue

Alternatively allowed behaviour:
Stop processing after a certain time / decompressed data count and warn user
that not everything might have been decompressed for analysis

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore the file content without asking the user whether he wants to abort the
process [c]

146 F Test Sets

UF_V_CB_2

file name md5 file size
UF_V_CB_2.zip b2d4891746e649e3fa43e46a0b9d876b 113 712B
Description:
The test case consists of a handcrafted zip file that contains six layers. In every
layer, ten new zip files are found, which at the lowest level deflate to a file of 4GiB
in size, containing the repeated string value “random”. In total, the file deflates
to about 4PiB.

To be used on:
Tools that automatically deflate compressed files for further analyses

Obligatory behaviour:
Notify the user of a decompression problem after a reasonable amount of time or
used disk space

Ideal behaviour:
Detect the heavy decompression ratio
Ask user whether or not he wants to continue

Alternatively allowed behaviour:
Stop processing after a certain time / decompressed data count and warn user
that not everything might have been decompressed for analysis

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore the file content without asking the user whether he wants to abort the
process [c]

147

UF_V_CB_3

file name md5 file size
UF_V_CB_3.zip 22564e6badd1151d2163fb6cb7b1b160 56 387B
Description:
The test case consists of a handcrafted zip file that contains three layers. Every
layer contains another zip file and the lowest layer deflates to 1TiB of zeroes.

To be used on:
Tools that automatically deflate compressed files for further analyses

Obligatory behaviour:
Notify the user of a decompression problem after a reasonable amount of time or
used disk space

Ideal behaviour:
Detect the heavy decompression ratio
Ask user whether or not he wants to continue

Alternatively allowed behaviour:
Stop processing after a certain time / decompressed data count and warn user
that not everything might have been decompressed for analysis

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Ignore the file content without asking the user whether he wants to abort the
process [c]

UF_V_PDF_1

file name md5 file size
UF_V_PDF_1.pdf bf4bfb54536a6e260c04bbd747fd30c0 1347B
Description:
The test case consists of a Linux-compatible PDF file that at the same time is a
Linux ELF binary, an Oracle Java jar and an HTML with javascript. The file is
not selfmade but created by Ange Albertini [Alb12].

To be used on:
Tools that analyse PDF files

Obligatory behaviour:
-

Ideal behaviour:
Detect all file formats

Alternatively allowed behaviour:
Warn user that more information is present in the file, which cannot be displayed
easily
Refuse to analysis the file

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Only show the PDF file [c]
Ignore any content inside the file [c]

UF_V_PDF_2

file name md5 file size
UF_V_PDF_2.pdf 9037cc041277d038d24b6eb37e847ff9 1526B
Description:
The test case consists of a Macintosh-compatible PDF file that at the same time
is a Macintosh MachO binary, an Oracle Java jar and an HTML with javascript.
The file is not selfmade but created by Ange Albertini [Alb12].

To be used on:
Tools that analyse PDF files

Obligatory behaviour:
-

Ideal behaviour:
Detect all file formats

Alternatively allowed behaviour:
Warn user that more information is present in the file, which cannot be displayed
easily
Refuse to analysis the file

Bad behaviour:
Show wrong error messages [p]
Crash / Become unresponsive [p]
Only show the PDF file [c]
Ignore any content inside the file [c]

List of Figures

3.1 The forensic software, depicted as a blackbox. 14
3.2 The root level of the schema tree. 16
3.3 The middle level of the schema tree. 17
3.4 The relevant leaf nodes of the schema tree. 18

4.1 A schematic view of a directory loop. 26
4.2 A simplified overview of the FAT file system. 27
4.3 A schematic overview of the NTFS file format. 29
4.4 A graphical view of the HFS catalog file. 31
4.5 A schematic view of an example disk with an MBR partition table. . 35
4.6 The handcrafted partition layouts of two test cases. 37
4.7 A part of the Windows Registry, visualised with the regedit software. 43

5.1 The evaluation result of the DL test cases. 62
5.2 The evaluation result of the PC test cases. 64
5.3 The evaluation result of the W test cases. 65
5.4 The evaluation result of the M test cases. 66
5.5 The evaluation result of all UF test cases. 71

C.1 A complete overview of the schema. 82

D.1 The interface of Synalyze It!, showing the use of a grammar for PNG
files. 83

List of Tables

3.1 The kingdoms from the taxonomy of Tsipenyuk et al. 14

List of Listings

4.1 The recommended use of radamsa, as stated in the FAQ on the project
homepage. 25

4.2 The creation process of a blank disk image file. 25
4.3 In this example, xxd is used to visualise sectors inside a disk image,

read out by dd. 26
4.4 Usage of ls with the option -i to find out the inode number. 30
4.5 Usage of ls to recursively find inode numbers. 33
4.6 The shortened hexdump of an extent block. 33
4.7 The automated creation process for disk partitions. 36
4.8 The Python script for automated formatting and creation of evidence. 36

Bibliography

[Ado13] Adobe Inc. Adobe Security Bulletins: APSB13-25, 2013. URL: https:
//www.adobe.com/support/security/bulletins/apsb13-25.html.

[AER09] AERAsec Network Services and Security GmbH. FTP File Index, 2009.
URL: ftp://ftp.aerasec.de/pub/advisories/decompressionbombs/
pictures/.

[Alb12] Ange Albertini. Mix, 2012. URL: http://mix.corkami.com.

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. Basic Concepts and Taxonomy of Dependable and Secure Com-
puting. IEEE Transactions on Dependable an Secure Computing, 1(1):11–
33, 2004.

[Anoa] Anonymous. Computer Forensic Tool Testing. URL: http://groups.
yahoo.com/neo/groups/cftt/info.

[Anob] Anonymous. Giraffe Animal Gray Wallpaper. URL: http://www.
wallchan.com/wallpaper/20159/.

[App] Apple Inc. mkfs.hfs(8): construct a new HFS Plus file system - Linux man
page. URL: http://manpages.ubuntu.com/manpages/precise/man8/
mkfs.hfs.8.html.

[App04] Apple Inc. Kernel and Device Drivers Layer, 2004. URL:
https://developer.apple.com/library/mac/documentation/
MacOSX/Conceptual/OSX_Technology_Overview/SystemTechnology/
SystemTechnology.html.

[App10a] Apple Inc. HFS Plus Volume Format - Technical Note TN1150,
2010. URL: http://dubeiko.com/development/FileSystems/HFSPLUS/
tn1150.html.

[App10b] Apple Inc. Property List Programming Guide: About Prop-
erty Lists, 2010. URL: https://developer.apple.com/
library/mac/documentation/Cocoa/Conceptual/PropertyLists/
AboutPropertyLists/AboutPropertyLists.html#//apple_ref/doc/
uid/10000048i-CH3-SW2.

[App13] Apple Inc. HFS+ Source Code, 2013. URL: http://opensource.apple.
com/source/xnu/xnu-1504.15.3/bsd/hfs/.

https://www.adobe.com/support/security/bulletins/apsb13-25.html
https://www.adobe.com/support/security/bulletins/apsb13-25.html
ftp://ftp.aerasec.de/pub/advisories/decompressionbombs/pictures/
ftp://ftp.aerasec.de/pub/advisories/decompressionbombs/pictures/
http://mix.corkami.com
http://groups.yahoo.com/neo/groups/cftt/info
http://groups.yahoo.com/neo/groups/cftt/info
http://www.wallchan.com/wallpaper/20159/
http://www.wallchan.com/wallpaper/20159/
http://manpages.ubuntu.com/manpages/precise/man8/mkfs.hfs.8.html
http://manpages.ubuntu.com/manpages/precise/man8/mkfs.hfs.8.html
https://developer.apple.com/library/mac/documentation/MacOSX/Conceptual/OSX_Technology_Overview/SystemTechnology/SystemTechnology.html
https://developer.apple.com/library/mac/documentation/MacOSX/Conceptual/OSX_Technology_Overview/SystemTechnology/SystemTechnology.html
https://developer.apple.com/library/mac/documentation/MacOSX/Conceptual/OSX_Technology_Overview/SystemTechnology/SystemTechnology.html
http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html
http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/AboutPropertyLists/AboutPropertyLists.html#//apple_ref/doc/uid/10000048i-CH3-SW2
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/AboutPropertyLists/AboutPropertyLists.html#//apple_ref/doc/uid/10000048i-CH3-SW2
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/AboutPropertyLists/AboutPropertyLists.html#//apple_ref/doc/uid/10000048i-CH3-SW2
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/AboutPropertyLists/AboutPropertyLists.html#//apple_ref/doc/uid/10000048i-CH3-SW2
http://opensource.apple.com/source/xnu/xnu-1504.15.3/bsd/hfs/
http://opensource.apple.com/source/xnu/xnu-1504.15.3/bsd/hfs/

[ARSS12] Anton Altaparmakov, Richard Russon, Erik Sornes, and Szabolcs Szakac-
sits. mkfs.ntfs(8): create NTFS file system - Linux man page, 2012. URL:
http://linux.die.net/man/8/mkfs.ntfs.

[Bil03] CVE-2003-1564, 2003. URL: http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2003-1564.

[Bru11] Josh Brunty. Validation of Forensic Tools and Software: A
Quick Guide for the Digital Forensic Examiner, 2011. URL:
http://www.dfinews.com/articles/2011/03/validation-forensic-
tools-and-software-quick-guide-digital-forensic-examiner.

[Byi] Carl Byington. outlook.pst - Format of MS Outlook .pst File. URL:
http://www.five-ten-sg.com/libpst/rn01re05.html.

[Car05] Brian Carrier. File System Forensic Analysis. Addison-Wesley Profes-
sional, 2005.

[Car10] Brian Carrier. Digital (Computer) Forensics Tool Testing Images, 2010.
URL: http://dftt.sourceforge.net/.

[Car11] Harlan Carvey. Windows Registry Forensics: Advanced Digital Forensic
Analysis of the Windows Registry. Syngress, 2011.

[Cha09] Ian Charters. The Evolution of Digital Forensics : Civilizing the Cyber
Frontier. Technical report, 2009.

[Che09] Brian Chess. Rough Auditing Tool for Security (RATS), 2009. URL:
https://code.google.com/p/rough-auditing-tool-for-security/.

[Chr06] Steve Christey. PLOVER - Preliminary List of Vulnerability Examples for
Researchers. Technical report, 2006.

[Coh09] William W. Cohen. Enron Email Dataset, 2009. URL: https://www.cs.
cmu.edu/~enron/.

[Cor13] MITRE Corp. CWE - CWE List (2.5), 2013. URL: http://cwe.mitre.
org/data/index.html.

[Dec13] Decalage. PDF Security Issues, 2013. URL: http://www.decalage.info/
file_formats_security/pdf.

[Dil12] Andreas Dilger. Ext4 Patch, 2012. URL: http://git.kernel.org/
cgit/linux/kernel/git/stable/stable-queue.git/diff/queue-
3.4/ext4-disallow-hard-linked-directory-in-ext4_lookup.patch?
id=fc126d9ef33b426f811ab822d1ab751d3d172e71.

[fdi] FDISK(8): Partition table manipulator - Linux man page. URL: http:
//linux.die.net/man/8/fdisk.

http://linux.die.net/man/8/mkfs.ntfs
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1564
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1564
http://www.dfinews.com/articles/2011/03/validation-forensic-tools-and-software-quick-guide-digital-forensic-examiner
http://www.dfinews.com/articles/2011/03/validation-forensic-tools-and-software-quick-guide-digital-forensic-examiner
http://www.five-ten-sg.com/libpst/rn01re05.html
http://dftt.sourceforge.net/
https://code.google.com/p/rough-auditing-tool-for-security/
https://www.cs.cmu.edu/~enron/
https://www.cs.cmu.edu/~enron/
http://cwe.mitre.org/data/index.html
http://cwe.mitre.org/data/index.html
http://www.decalage.info/file_formats_security/pdf
http://www.decalage.info/file_formats_security/pdf
http://git.kernel.org/cgit/linux/kernel/git/stable/stable-queue.git/diff/queue-3.4/ext4-disallow-hard-linked-directory-in-ext4_lookup.patch?id=fc126d9ef33b426f811ab822d1ab751d3d172e71
http://git.kernel.org/cgit/linux/kernel/git/stable/stable-queue.git/diff/queue-3.4/ext4-disallow-hard-linked-directory-in-ext4_lookup.patch?id=fc126d9ef33b426f811ab822d1ab751d3d172e71
http://git.kernel.org/cgit/linux/kernel/git/stable/stable-queue.git/diff/queue-3.4/ext4-disallow-hard-linked-directory-in-ext4_lookup.patch?id=fc126d9ef33b426f811ab822d1ab751d3d172e71
http://git.kernel.org/cgit/linux/kernel/git/stable/stable-queue.git/diff/queue-3.4/ext4-disallow-hard-linked-directory-in-ext4_lookup.patch?id=fc126d9ef33b426f811ab822d1ab751d3d172e71
http://linux.die.net/man/8/fdisk
http://linux.die.net/man/8/fdisk

[Fin09] Rodel Finones. Exploit:Win32/Pdfjsc.BI, 2009. URL: http:
//www.microsoft.com/security/portal/threat/encyclopedia/
Entry.aspx?Name=Exploit%3AWin32%2FPdfjsc.BI.

[Gar07] Simson Garfinkel. Anti-Forensics: Techniques, Detection and Countermea-
sures. In 2nd International Conference on i-Warfare and Security, pages
77–84, 2007.

[Ges11] Alexander Geschonneck. Computer-Forensik: Computerstraftaten erken-
nen, ermitteln, aufklären. dpunkt.verlag, ix edition, 2011.

[GFRD09] Simson Garfinkel, Paul Farrell, Vassil Roussev, and George Dinolt.
Bringing Science to Digital Forensics with Standardized Forensic Cor-
pora. Digital Investigation, 6:2–11, September 2009. URL: http://
digitalcorpora.org/corpora/files.

[Goo13] Google Inc. Google Logo, 2013. URL: https://www.google.de/images/
srpr/logo11w.png.

[Gus11] Sam Gustin. Digital Music Sales Surpass Physical Music Sales For the
First Time Ever, 2011. URL: http://business.time.com/2012/01/
06/digital-music-sales-finally-surpassed-physical-sales-in-
2011/.

[Har06] Ryan Harris. Arriving at an anti-forensics consensus: Examining how
to define and control the anti-forensics problem. Digital Investiga-
tion, 3S:44–49, 2006. URL: http://www.sciencedirect.com/science/
article/pii/S1742287606000673.

[Har13] Phil Harvey. ExifTool, 2013. URL: http://www.sno.phy.queensu.ca/
~phil/exiftool/.

[Hel13] Aki Helin. Radamsa - ouspg - On fuzzing., 2013. URL: http://code.
google.com/p/ouspg/wiki/Radamsa.

[HR10] Prof. Dr. Bernd Heinrich and Dr. Tobias Reinbacher. Freie richterliche
Beweiswürdigung – § 261 StPO. Arbeitsblatt zur Vorbereitung auf Staat-
sexamen, 2010.

[Hud12] Dave Hudson. mkfs.vfat(8): create MS-DOS file system under Linux -
Linux man page, 2012. URL: http://linux.die.net/man/8/mkfs.vfat.

[ILA02] ILAC. Guidelines for Forensic Science Laboratories. Technical report,
2002. URL: https://www.ilac.org/documents/g19_2002.pdf.

[Int11] Int0x80. Anti-Forensics, 2011. URL: https://github.com/int0x80/
anti-forensics.

http://www.microsoft.com/security/portal/threat/encyclopedia/Entry.aspx?Name=Exploit%3AWin32%2FPdfjsc.BI
http://www.microsoft.com/security/portal/threat/encyclopedia/Entry.aspx?Name=Exploit%3AWin32%2FPdfjsc.BI
http://www.microsoft.com/security/portal/threat/encyclopedia/Entry.aspx?Name=Exploit%3AWin32%2FPdfjsc.BI
http://digitalcorpora.org/corpora/files
http://digitalcorpora.org/corpora/files
https://www.google.de/images/srpr/logo11w.png
https://www.google.de/images/srpr/logo11w.png
http://business.time.com/2012/01/06/digital-music-sales-finally-surpassed-physical-sales-in-2011/
http://business.time.com/2012/01/06/digital-music-sales-finally-surpassed-physical-sales-in-2011/
http://business.time.com/2012/01/06/digital-music-sales-finally-surpassed-physical-sales-in-2011/
http://www.sciencedirect.com/science/article/pii/S1742287606000673
http://www.sciencedirect.com/science/article/pii/S1742287606000673
http://www.sno.phy.queensu.ca/~phil/exiftool/
http://www.sno.phy.queensu.ca/~phil/exiftool/
http://code.google.com/p/ouspg/wiki/Radamsa
http://code.google.com/p/ouspg/wiki/Radamsa
http://linux.die.net/man/8/mkfs.vfat
https://www.ilac.org/documents/g19_2002.pdf
https://github.com/int0x80/anti-forensics
https://github.com/int0x80/anti-forensics

[ISO05] ISO/IEC. Allgemeine Anforderungen an die Kompetenz von
Prüf- und Kalibrierlaboratorien (ISO/IEC 17025:2005), 2005.
URL: http://www.uni-due.de/imperia/md/content/water-
science/2951wa_0809_r01.pdf.

[IW08] Vinay M. Igure and Ronald D. Williams. Taxonomies of Attacks and Vul-
nerabilities in Computer Systems. IEEE Communications Surveys & Tuto-
rials, 10:6–19, 2008. URL: http://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=4483667.

[JPA08] Rob Joyce, Judson Powers, and Frank Adelstein. Mac Marshal: A Tool for
Mac OS X Operating System and Application Forensics. In Proceedings of
the 2008 Digital Forensic Research Workshop, 2008. URL: http://www.
dfrws.org/2008/proceedings/p83-joyce_pres.pdf.

[Jum13a] Jump Lists, 2013. URL: http://www.forensicswiki.org/wiki/Jump_
Lists.

[Jum13b] List of Jump List IDs, 2013. URL: http://www.forensicswiki.org/
wiki/List_of_Jump_List_IDs.

[Kor11] Jesse Kornblum. dc3dd, 2011. URL: http://sourceforge.net/
projects/dc3dd/.

[LBMC94] Carl E. Landwehr, Alan R. Bull, John P. McDermott, and Williams S.
Choi. A Taxonomy of Computer Program Security Flaws, with Ex-
amples. ACM Computing Surveys, 26(3):211–254, 1994. URL: http:
//www.stormingmedia.us/78/7855/A785564.html.

[Mar] Marvel. File:Rotating earth (large).gif. URL: http://commons.
wikimedia.org/wiki/File:Rotating_earth_(large).gif.

[Met10] Joachim Metz. Windows Search Forensics. Technical report, 2010.

[Met12] Joachim Metz. Extensible Storage Engine (ESE) Database File (EDB)
Format Specification. Technical report, 2012.

[Met13a] Joachim Metz. File Formats, 2013. URL: http://code.google.com/p/
libyal/wiki/Overview.

[Met13b] Joachim Metz. Windows XML Event Log (EVTX). Technical report,
2013.

[Mic13] Microsoft Corporation. Microsoft Office File Formats, 2013. URL: http:
//msdn.microsoft.com/en-us/library/cc313118.aspx.

[NIS01] NIST. General Test Methodology for Computer Forensic Tools. Technical
report, NIST, 2001.

[NIS05] NIST. Digital Data Acquisition Tool Test Assertions and Test Plan, 2005.
URL: http://www.cftt.nist.gov/DA-ATP-pc-01.pdf.

http://www.uni-due.de/imperia/md/content/water-science/2951wa_0809_r01.pdf
http://www.uni-due.de/imperia/md/content/water-science/2951wa_0809_r01.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4483667
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4483667
http://www.dfrws.org/2008/proceedings/p83-joyce_pres.pdf
http://www.dfrws.org/2008/proceedings/p83-joyce_pres.pdf
http://www.forensicswiki.org/wiki/Jump_Lists
http://www.forensicswiki.org/wiki/Jump_Lists
http://www.forensicswiki.org/wiki/List_of_Jump_List_IDs
http://www.forensicswiki.org/wiki/List_of_Jump_List_IDs
http://sourceforge.net/projects/dc3dd/
http://sourceforge.net/projects/dc3dd/
http://www.stormingmedia.us/78/7855/A785564.html
http://www.stormingmedia.us/78/7855/A785564.html
http://commons.wikimedia.org/wiki/File:Rotating_earth_(large).gif
http://commons.wikimedia.org/wiki/File:Rotating_earth_(large).gif
http://code.google.com/p/libyal/wiki/Overview
http://code.google.com/p/libyal/wiki/Overview
http://msdn.microsoft.com/en-us/library/cc313118.aspx
http://msdn.microsoft.com/en-us/library/cc313118.aspx
http://www.cftt.nist.gov/DA-ATP-pc-01.pdf

[NIS13a] NIST. NIST Computer Forensic Tool Testing Program, 2013. URL: http:
//www.cftt.nist.gov/.

[NIS13b] NIST. The CFReDS Project, 2013. URL: http://www.cfreds.nist.
gov/.

[NPSB07] Tim Newsham, Chris Palmer, Alex Stamos, and Jesse Burns. Breaking
Forensics Software : Weaknesses in Critical Evidence Collection. Technical
report, iSEC Partners, Inc., 2007.

[OAS11] OASIS Open. Open Document Format for Office Applications (OpenDoc-
ument) Version 1.2, 2011. URL: http://docs.oasis-open.org/office/
v1.2/OpenDocument-v1.2.pdf.

[Off13a] Offensive Security Ltd. Kali Linux, 2013. URL: http://www.kali.org/.

[Off13b] Offensive Security Ltd. Kali Linux Forensics Mode, 2013. URL: http:
//docs.kali.org/general-use/kali-linux-forensics-mode.

[Ora13a] Oracle. Oracle VM VirtualBox, 2013. URL: https://www.virtualbox.
org/.

[Ora13b] Oracle Corporation. Oracle Outside In Technology, 2013. URL: http:
//www.oracle.com/us/technologies/embedded/025613.htm.

[Ort11] Tanguy Ortolo. Repacking ZIP-based containers, 2011. URL: http://
tanguy.ortolo.eu/blog/article24/repack-zip-container.

[OWA08] OWASP Foundation. OWASP Code Review Guide. Technical report,
2008.

[OWA13] OWASP. OWASP Top 10 - 2013. Technical report, 2013.

[Oxf13] forensic, adj. and n. : Oxford English Dictionary, 2013. URL:
http://www.oed.com/view/Entry/73107?rskey=4nKI1g&result=
4&isAdvanced=false.

[Peh13] Andreas Pehnack. Synalyze It!, 2013. URL: http://www.synalysis.net/.

[Rid07] Chris K. Ridder. Evidentiary Implications of Potential Security
Weaknesses in Forensic Software. Technical report, 2007. URL:
http://www.scn.rain.com/~neighorn/PDF/Ridder-Evidentiary_
Implications_of_Security_Weaknesses_in_Forensic_Software.pdf.

[RMK11] Paul Rubin, David MacKenzie, and Stuart Kemp. dd(1): convert/copy
file - Linux man page, 2011. URL: http://linux.die.net/man/1/dd.

[Rog05] Marcus K. Rogers. Anti-Forensics - Presentation given to Lockheed Mar-
tin, 2005.

http://www.cftt.nist.gov/
http://www.cftt.nist.gov/
http://www.cfreds.nist.gov/
http://www.cfreds.nist.gov/
http://docs.oasis-open.org/office/v1.2/OpenDocument-v1.2.pdf
http://docs.oasis-open.org/office/v1.2/OpenDocument-v1.2.pdf
http://www.kali.org/
http://docs.kali.org/general-use/kali-linux-forensics-mode
http://docs.kali.org/general-use/kali-linux-forensics-mode
https://www.virtualbox.org/
https://www.virtualbox.org/
http://www.oracle.com/us/technologies/embedded/025613.htm
http://www.oracle.com/us/technologies/embedded/025613.htm
http://tanguy.ortolo.eu/blog/article24/repack-zip-container
http://tanguy.ortolo.eu/blog/article24/repack-zip-container
http://www.oed.com/view/Entry/73107?rskey=4nKI1g&result=4&isAdvanced=false
http://www.oed.com/view/Entry/73107?rskey=4nKI1g&result=4&isAdvanced=false
http://www.synalysis.net/
http://www.scn.rain.com/~neighorn/PDF/Ridder-Evidentiary_Implications_of_Security_Weaknesses_in_Forensic_Software.pdf
http://www.scn.rain.com/~neighorn/PDF/Ridder-Evidentiary_Implications_of_Security_Weaknesses_in_Forensic_Software.pdf
http://linux.die.net/man/1/dd

[Rus99] Mark Russinovich. Inside the Registry. Windows NT Magazine,
1999. URL: http://www.microsoft.com/technet/archive/winntas/
tips/winntmag/inreg.mspx?mfr=true.

[Sch07] Andreas Schuster. Introducing the Microsoft Vista Event Log File Format.
In Proceedings of the 2007 Digital Forensic Research Workshop, 2007.

[Sen95] Tim Sennitt. PC DOS 7 Technical Update. Technical report, 1995.

[SG11] Alexander Sigel and Alexander Geschonneck. Goldmine: Spurensuche in
der Windows-Registry. iX - Magazin für professionelle Informationstech-
nik, (1):100–105, 2011. URL: https://www.heise.de/artikel-archiv/
ix/2011/01/100_Goldmine.

[Sin09] Steven Sinofsky. Our Next Engineering Milestone: RTM, 2009.
URL: http://blogs.msdn.com/b/e7/archive/2009/07/22/our-next-
engineering-milestone-rtm.aspx.

[Smi12] Roderick W. Smith. gdisk(8) - Linux man page, 2012. URL: http://
linux.die.net/man/8/gdisk.

[Sta13] StatCounter. Top 7 Desktop, Tablet & Console OSs from Dec 2012 to
Dec 2013, 2013. URL: http://gs.statcounter.com/#os-ww-monthly-
201212-201312.

[Ste09] Didier Stevens. Malformed PDF Documents, 2009. URL: http://blog.
didierstevens.com/2009/05/14/malformed-pdf-documents/.

[TCM05] Katrina Tsipenyuk, Brian Chess, and Gary McGraw. Seven pernicious
kingdoms: A taxonomy of software security errors. In Proceedings of
Workshop on Software Security Assurance Tools, Techniques, and Met-
rics, pages 36–43, Long Beach, CA, 2005. URL: http://hissa.nist.
gov/~black/Papers/NISTSP500-265.pdf.

[Thi08] David Thiel. Exposing Vulnerabilities in Media Software. In BlackHat
EU 2008, 2008. URL: http://www.blackhat.com/presentations/bh-
europe-08/Thiel/Whitepaper/bh-eu-08-thiel-WP.pdf.

[Trm] Miroslac Trmac. mlocate.db(5) - mlocate database. URL: http://linux.
die.net/man/5/mlocate.db.

[Ts’12] Theodore Ts’o. mkfs.ext4(8): create ext2/ext3/ext4 filesystem - Linux
man page, 2012. URL: http://linux.die.net/man/8/mkfs.ext4.

[Uni13] Unified EFI Inc. Unified Extensible Firmware Interface Specification 2.4.
Technical report, 2013.

[Val08] Javier Vicente Vallejo. Adobe Acrobat Reader Malformed PDF Code Ex-
ecution Vulnerability, 2008. URL: http://www.zerodayinitiative.com/
advisories/ZDI-08-073/.

http://www.microsoft.com/technet/archive/winntas/tips/winntmag/inreg.mspx?mfr=true
http://www.microsoft.com/technet/archive/winntas/tips/winntmag/inreg.mspx?mfr=true
https://www.heise.de/artikel-archiv/ix/2011/01/100_Goldmine
https://www.heise.de/artikel-archiv/ix/2011/01/100_Goldmine
http://blogs.msdn.com/b/e7/archive/2009/07/22/our-next-engineering-milestone-rtm.aspx
http://blogs.msdn.com/b/e7/archive/2009/07/22/our-next-engineering-milestone-rtm.aspx
http://linux.die.net/man/8/gdisk
http://linux.die.net/man/8/gdisk
http://gs.statcounter.com/#os-ww-monthly-201212-201312
http://gs.statcounter.com/#os-ww-monthly-201212-201312
http://blog.didierstevens.com/2009/05/14/malformed-pdf-documents/
http://blog.didierstevens.com/2009/05/14/malformed-pdf-documents/
http://hissa.nist.gov/~black/Papers/NIST SP 500-265.pdf
http://hissa.nist.gov/~black/Papers/NIST SP 500-265.pdf
http://www.blackhat.com/presentations/bh-europe-08/Thiel/Whitepaper/bh-eu-08-thiel-WP.pdf
http://www.blackhat.com/presentations/bh-europe-08/Thiel/Whitepaper/bh-eu-08-thiel-WP.pdf
http://linux.die.net/man/5/mlocate.db
http://linux.die.net/man/5/mlocate.db
http://linux.die.net/man/8/mkfs.ext4
http://www.zerodayinitiative.com/advisories/ZDI-08-073/
http://www.zerodayinitiative.com/advisories/ZDI-08-073/

[WA13] Martin Wundram and Hendrik Adam. Anti-Anti-Forensik. In 3. IT Foren-
sik Workshop FH Aachen, 2013.

[Wei98] Juergen Weigert. xxd(1): make hexdump/do reverse - Linux man page,
1998. URL: http://linux.die.net/man/1/xxd.

[WFM13] Martin Wundram, Felix C. Freiling, and Christian Moch. Anti-Forensics
: The Next Step in Digital Forensics Tool Testing. In 7th International
Conference on IT Security Incident Management and IT Forensics (IMF),
pages 83–97, 2013. doi:10.1109/IMF.2013.17.

[Wik13] Wikipedia. List of digital forensic tools, 2013. URL: http://en.
wikipedia.org/wiki/List_of_digital_forensics_tools.

[Won13] Darrick J. Wong. Ext4 Disk Layout, 2013. URL: https://ext4.wiki.
kernel.org/index.php/Ext4_Disk_Layout.

[Wun13] Martin Wundram. Kritische Sicherheitslücken in Write-Blocker entdeckt,
2013. URL: http://heise.de/-2071582.

[Zet13] Kim Zetter. How a Crypto ‘Backdoor’ Pitted the Tech World Against the
NSA, 2013. URL: http://www.wired.com/threatlevel/2013/09/nsa-
backdoor/.

http://linux.die.net/man/1/xxd
http://dx.doi.org/10.1109/IMF.2013.17
http://en.wikipedia.org/wiki/List_of_digital_forensics_tools
http://en.wikipedia.org/wiki/List_of_digital_forensics_tools
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
http://heise.de/-2071582
http://www.wired.com/threatlevel/2013/09/nsa-backdoor/
http://www.wired.com/threatlevel/2013/09/nsa-backdoor/

	Introduction
	Motivation
	Related Work
	Contribution and Limitations
	Organisation of This Thesis

	Background
	Digital Forensics
	Digital Forensic Software
	Anti-Forensics
	Standardisation of Digital Forensic Tool Testing
	Computer Forensic Tool Testing Project (CFTT)
	Computer Forensic Reference Data Sets

	An Examplary Schema: MITRE's CWE

	Schema and Deduction of test cases
	Review of Seven Pernicious Kingdoms
	Construction of a New Schema
	Deduction of Test Cases

	Implementation of test cases
	Tools Used During the Implementation Phase
	Test Set 1: File System
	Directory Loops
	Partition Tables

	Test Set 2: OS Specific Files
	Windows
	Mac OS X
	Linux

	Test Set 3: User Files
	Multimedia Files
	Office Files
	Various

	Testing forensic software (Evaluation)
	Evaluated Software
	File System Based Evaluation
	Operating System Based Evaluation
	User File Based Evaluation
	Evaluation Results

	Conclusion
	Advantages of Structured Testcases and Summary
	Future Work

	Acronyms
	Test Cases On CD-R
	Complete Schema Tree
	Screenshots
	Radamsa Mutators
	Test Sets
	List of Figures
	List of Tables
	List of Listings
	Bibliography

